首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1943篇
  免费   121篇
  国内免费   1篇
  2065篇
  2023年   9篇
  2022年   13篇
  2021年   26篇
  2020年   15篇
  2019年   25篇
  2018年   31篇
  2017年   30篇
  2016年   37篇
  2015年   47篇
  2014年   74篇
  2013年   126篇
  2012年   106篇
  2011年   100篇
  2010年   60篇
  2009年   59篇
  2008年   80篇
  2007年   107篇
  2006年   85篇
  2005年   77篇
  2004年   80篇
  2003年   80篇
  2002年   73篇
  2001年   53篇
  2000年   71篇
  1999年   44篇
  1998年   14篇
  1997年   14篇
  1996年   16篇
  1995年   16篇
  1993年   9篇
  1992年   46篇
  1991年   46篇
  1990年   45篇
  1989年   45篇
  1988年   44篇
  1987年   31篇
  1986年   24篇
  1985年   22篇
  1984年   18篇
  1983年   18篇
  1982年   18篇
  1981年   14篇
  1980年   14篇
  1979年   11篇
  1972年   6篇
  1971年   8篇
  1969年   9篇
  1968年   10篇
  1967年   6篇
  1966年   8篇
排序方式: 共有2065条查询结果,搜索用时 15 毫秒
951.
Sleep and Biological Rhythms - Automatic algorithms are a proposed alternative to manual assessment of polysomnography data for analyzing sleep structure; however, none are acceptably accurate for...  相似文献   
952.
Cells in osteoclast and osteoblast lineages communicate with each other through cell-cell contact, diffusible paracrine factors and cell-bone matrix interaction. Osteoclast-osteoblast communication occurs in a basic multicellular unit (BMU) at the initiation, transition and termination phases of bone remodeling. At the initiation phase, hematopoietic precursors are recruited to the BMU. These precursors express cell surface receptors including c-Fms, RANK and costimulatory molecules, such as osteoclast-associated receptor (OSCAR), and differentiate into osteoclasts following cell-cell contact with osteoblasts, which express ligands. Subsequently, the transition from bone resorption to formation is mediated by osteoclast-derived ‘coupling factors’, which direct the differentiation and activation of osteoblasts in resorbed lacunae to refill it with new bone. Bidirectional signaling generated by interaction between ephrinB2 on osteoclasts and EphB4 on osteoblast precursors facilitates the transition. Such interaction is likely to occur between osteoclasts and lining cells in the bone remodeling compartment (BRC). At the termination phase, bone remodeling is completed by osteoblastic bone formation and mineralization of bone matrix. Here, we describe molecular communication between osteoclasts and osteoblasts at distinct phases of bone remodeling.  相似文献   
953.
Aoki N  Matsuo H  Deshimaru M  Terada S 《Gene》2008,426(1-2):7-14
Five small serum proteins (SSPs) with molecular masses of 6.5-10 kDa were detected in Habu (Trimeresurus flavoviridis) serum; this included two novel proteins SSP-4 and SSP-5. The amino acid sequences of these proteins and of SSP-1, SSP-2, and SSP-3, which were reported previously, were determined on the basis of the nucleotide sequences of their cDNAs. Although these proteins exhibited only limited sequence identity to mammalian prostatic secretory protein of 94 amino acids (PSP94), the topological pattern of disulfide bonds in SSPs was identical to that of the mammalian proteins. SSP-3 and SSP-4 lacked approximately 30 residues at the C-terminal. Each of the full-length cDNAs encoded a mature protein of 62-90 residues and a highly conserved signal peptide. The evolutionary distances between SSPs estimated on the basis of the amino acid changes were significantly greater than those of the synonymous nucleotide substitutions; these finding, together with results from analyses of nonsynonymous to synonymous rates of change (dN/dS) suggest that snake SSPs have endured substantial accelerated adaptive protein evolution. Such accelerated positive selection in SSPs parallels other findings of similar molecular evolution in snake venom proteins and suggests that diversifying selection on both systems may be linked, and that snake SSP genes may have evolved by gene duplication and rapid diversification to facilitate the acquisition of various functions to block venom activity within venomous snakes.  相似文献   
954.
955.
956.
Edaphic specialization is one of the main drivers of plant diversification and has multifaceted effects on population dynamics. Carex angustisquama is a sedge plant growing only on heavily acidified soil in solfatara fields, where only extremophytes can survive. Because of the lack of closely related species in similar habitats and its disjunct distribution, the species offers ideal settings to investigate the effects of adaptation to solfatara fields and of historical biogeography on the genetic consequences of plant edaphic specialization to solfatara fields. Here, genome‐wide single nucleotide polymorphisms were used to reveal the phylogenetic origin of C. angustisquama, and 16 expressed sequence tag–simple sequence repeat markers were employed to infer population demography of C angustisquama. Molecular phylogenetic analysis strongly indicated that C. angustisquama formed a monophyletic clade with Carex doenitzii, a species growing on nonacidified soil in the sympatric subalpine zone. The result of population genetic analysis showed that C. angustisquama has much lower genetic diversity than the sister species, and notably, all 16 loci were completely homozygous in most individuals of C. angustisquama. Approximate Bayesian computation analysis supported the model that assumed hierarchical declines of population size through its evolutionary sequence. We propose that the edaphic specialist in solfatara fields has newly attained the adaptation to solfatara fields in the process of speciation. Furthermore, we found evidence of a drastic reduction in genetic diversity in C. angustisquama, suggesting that the repeated founder effects associated with edaphic specialization and subsequent population demography lead to the loss of genetic diversity of this extremophyte in solfatara fields.  相似文献   
957.
958.
Differentiation-inducing factor-3 (DIF-3), found in the cellular slime mold Dictyostelium discoideum, and its derivatives such as butoxy-DIF-3 (Bu-DIF-3) are potent anti-tumor agents. However, the precise mechanisms underlying the actions of DIF-3 remain to be elucidated. In this study, we synthesized a green fluorescent derivative of DIF-3, BODIPY-DIF-3, and a control fluorescent compound, Bu-BODIPY (butyl-BODIPY), and investigated how DIF-like molecules behave in human cervical cancer HeLa cells by using both fluorescence and electron microscopy. BODIPY-DIF-3 at 5–20 µ M suppressed cell growth in a dose-dependent manner, whereas Bu-BODIPY had minimal effect on cell growth. When cells were incubated with BODIPY-DIF-3 at 20 µM, it penetrated cell membranes within 0.5 h and localized mainly in mitochondria, while Bu-BODIPY did not stain the cells. Exposure of cells for 1–3 days to DIF-3, Bu-DIF-3, BODIPY-DIF-3, or CCCP (a mitochondrial uncoupler) induced substantial mitochondrial swelling, suppressing cell growth. When added to isolated mitochondria, DIF-3, Bu-DIF-3, and BOIDPY-DIF-3, like CCCP, dose-dependently promoted the rate of oxygen consumption, but Bu-BODIPY did not. Our results suggest that these bioactive DIF-like molecules suppress cell growth, at least in part, by disturbing mitochondrial activity. This is the first report showing the cellular localization and behavior of DIF-like molecules in mammalian tumor cells.  相似文献   
959.
960.
Bone morphogenetic proteins (BMPs) regulate many aspects of skeletal development, including osteoblast and chondrocyte differentiation, cartilage and bone formation, and cranial and limb development. Among them, BMP-2, one of the most potent osteogenic signaling molecules, stimulates osteoblast differentiation, while it inhibits myogenic differentiation in C2C12 cells. To evaluate genes involved in BMP-2-induced osteoblast differentiation, we performed cDNA microarray analyses to compare BMP-2-treated and -untreated C2C12 cells. We focused on Alx3 (aristaless-like homeobox 3) which was clearly induced during osteoblast differentiation. Alx3, a homeobox gene related to the Drosophila aristaless gene, has been linked to developmental functions in craniofacial structures and limb development. However, little is known about its direct relationship with bone formation. In the present study, we focused on the mechanisms of Alx3 gene expression and function during osteoblast differentiation induced by BMP-2. In C2C12 cells, BMP-2 induced increase of Alx3 gene expression in both time- and dose-dependent manners through the BMP receptors-mediated SMAD signaling pathway. In addition, silencing of Alx3 by siRNA inhibited osteoblast differentiation induced by BMP-2, as showed by the expressions of alkaline phosphatase (Alp), Osteocalcin, and Osterix, while over-expression of Alx3 enhanced osteoblast differentiation induced by BMP-2. These results indicate that Alx3 expression is enhanced by BMP-2 via the BMP receptors mediated-Smad signaling and that Alx3 is a positive regulator of osteoblast differentiation induced by BMP-2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号