首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   875篇
  免费   32篇
  国内免费   1篇
  908篇
  2022年   4篇
  2021年   13篇
  2020年   3篇
  2019年   8篇
  2018年   8篇
  2017年   18篇
  2016年   13篇
  2015年   17篇
  2014年   28篇
  2013年   53篇
  2012年   43篇
  2011年   52篇
  2010年   30篇
  2009年   36篇
  2008年   42篇
  2007年   41篇
  2006年   40篇
  2005年   55篇
  2004年   70篇
  2003年   48篇
  2002年   49篇
  2001年   36篇
  2000年   27篇
  1999年   25篇
  1998年   7篇
  1997年   7篇
  1996年   9篇
  1995年   7篇
  1994年   3篇
  1993年   5篇
  1992年   11篇
  1991年   12篇
  1990年   11篇
  1989年   11篇
  1988年   6篇
  1987年   8篇
  1986年   8篇
  1985年   9篇
  1984年   2篇
  1983年   2篇
  1982年   6篇
  1981年   4篇
  1980年   3篇
  1977年   2篇
  1976年   3篇
  1973年   1篇
  1971年   2篇
  1970年   3篇
  1968年   1篇
  1965年   1篇
排序方式: 共有908条查询结果,搜索用时 0 毫秒
101.
Porphyromonas gingivalis strain 381 lipid A showed lower activity in inducing interleukin (IL)-1alpha and IL-1beta production and cytokine mRNA expression than synthetic Escherichia coli lipid A (compound 506) in alveolar macrophages of C57BL/6 mice. Both the lipid As induced tumor necrosis factor alpha in alveolar macrophages and IL-6 in peritoneal macrophages. A calmodulin (CaM) antagonist, W-7, inhibited IL-1beta production and its mRNA expression induced by P. gingivalis lipid A but not compound 506 in alveolar macrophages. A CaM kinase activator reduced the induction of IL-1beta in the serum of mice when administered with compound 506, and protected the mice against the lethal toxicity. The modulation of a variety of intracellular enzymes including the CaM kinase may result in clinical control of endotoxic sepsis.  相似文献   
102.
Nomura T  Ogita S  Kato Y 《Plant physiology》2012,159(2):565-578
Tuliposides, the glucose esters of 4-hydroxy-2-methylenebutanoate and 3,4-dihydroxy-2-methylenebutanoate, are major secondary metabolites in tulip (Tulipa gesneriana). Their lactonized aglycons, tulipalins, function as defensive chemicals due to their biological activities. We recently found that tuliposide-converting enzyme (TCE) purified from tulip bulbs catalyzed the conversion of tuliposides to tulipalins, but the possibility of the presence of several TCE isozymes was raised: TCE in tissues other than bulbs is different from bulb TCE. Here, to prove this hypothesis, TCE was purified from petals, which have the second highest TCE activity after bulbs. The purified enzyme, like the bulb enzyme, preferentially accepted tuliposides as substrates, with 6-tuliposide A the best substrate, which allowed naming the enzyme tuliposide A-converting enzyme (TCEA), but specific activity and molecular mass differed between the petal and bulb enzymes. After peptide sequencing, a novel cDNA (TgTCEA) encoding petal TCEA was isolated, and the functional characterization of the recombinant enzyme verified that TgTCEA catalyzes the conversion of 6-tuliposide A to tulipalin A. TgTCEA was transcribed in all tulip tissues but not in bulbs, indicating the presence of a bulb-specific TgTCEA, as suggested by the distinct enzymatic characters between the petal and bulb enzymes. Plastidial localization of TgTCEA enzyme was revealed, which allowed proposing a cytological mechanism of TgTCE-mediated tulipalin formation in the tulip defensive strategy. Site-directed mutagenesis of TgTCEA suggested that the oxyanion hole and catalytic triad characteristic of typical carboxylesterases are essential for the catalytic process of TgTCEA enzyme. To our knowledge, TgTCEA is the first identified member of the lactone-forming carboxylesterases, specifically catalyzing intramolecular transesterification.  相似文献   
103.
104.
Promoter sequences of three anther-specific genes, each of which shows sequence identity to lipid transfer protein (LTP12), xyloglucan endotransglucosylase/hydrolase (XTH3), and polygalacturonase (PGA4), were obtained from Arabidopsis thaliana, fused to the #-glucuronidase (GUS) gene, and then introduced into A. thaliana. Histochemical GUS assay showed that the PGA4 promoter was active in the tapetum at the bicellular pollen stage and in tricellular pollen. The promoter of LTP12 and XTH3 directed GUS expression exclusively in the tapetum. The LTP12 promoter was activated from the uninucleate microspore stage, while the XTH3 promoter was activated from the bicellular pollen stage. This type of activation pattern at the late developmental stage of the tapetum has not been reported previously. The promoter sequences employed in this study will be useful for the characterization of genes differentially expressed in anthers.  相似文献   
105.
We have designed and synthesized of carbohydrate-binding peptides, gramicidin S analogues. Asn/Asp/Gln and Trp residues in the peptides were employed as the binding sites for carbohydrates by hydrogen-bonding interaction and the creation units for hydrophobic pocket to promote the interaction, respectively. The data of fluorescence spectroscopy and affinity column chromatography indicated that the peptides possessed the binding ability for some carbohydrates in aqueous medium. As a result of 1H NMR study, nuclear Overhauser effects between aromatic side chains of a peptide, [Gln(1,1'),Trp(3,3')]-gramisidin S and mannose were observed, indicating that the interaction of the peptide with the sugar occurred in the hydrophobic environment formed by Trp and Phe residues.  相似文献   
106.
Summary Higher culture pH of 7.6 was shown to be preferable for the inclusion body formation of salmon growth hormone (SGH) inEscherichia coli harboring a recombinant plasmid. High-level formation of SGH inclusion bodies was achieved at 33°C (pH 7.6). Growth inhibition by soluble SGH was also observed.  相似文献   
107.
The pore-forming activity of CEL-III, a Gal/GalNAc specific lectin from the Holothuroidea Cucumaria echinata, was examined using artificial lipid membranes as a model system of erythrocyte membrane. The carboxyfluorescein (CF)-leakage studies clearly indicated that CEL-III induced the formation of pores in the dipalmitoyl phosphatidyl choline (DPPC)-lactosyl ceramide (LacCer) liposomes effectively but not in the DPPC-glucosyl ceramide (GlcCer) liposomes or DPPC liposomes. Such a leakage of CF was strongly inhibited by lactose, a potent inhibitor of CEL-III, suggesting that the leakage is mediated through the specific binding of CEL-III to the carbohydrate chains on the surface of the liposomes. The leakage of CF from the DPPC-lactosyl ceramide liposomes was pH-dependent, and it increased with increasing pH. The immunoblotting analysis and circular dichroism data indicated that upon interaction with liposomes, CEL-III associated to form an oligomer concomitantly with a marked conformational change. Furthermore, channel measurements showed that CEL-III has an ability to form small ion channels in the planar lipid bilayers consisting of diphytanoylphosphatidylcholine and human globoside (Gb4Cer)/LacCer.  相似文献   
108.
Neuropeptide Y2 receptor (Y2R) agonism is an important anorectic signal and a target of antiobesity drug discovery. Recently, we synthesized a short-length Y2R agonist, PYY-1119 (4-imidazolecarbonyl-[d-Hyp24,Iva25,Pya(4)26,Cha27,36,γMeLeu28,Lys30,Aib31]PYY(23–36), 1) as an antiobesity drug candidate. Compound 1 induced marked body weight loss in diet-induced obese (DIO) mice; however, 1 also induced severe vomiting in dogs at a lower dose than the minimum effective dose administered to DIO mice. The rapid absorption of 1 after subcutaneous administration caused the severe vomiting. Polyethylene glycol (PEG)- and alkyl-modified derivatives of 1 were synthesized to develop Y2R agonists with improved pharmacokinetic profiles, i.e., lower maximum plasma concentration (Cmax) and longer time at maximum concentration (Tmax). Compounds 5 and 10, modified with 20?kDa PEG at the N-terminus and eicosanedioic acid at the Lys30 side chain of 1, respectively, showed high Y2R binding affinity and induced significant body weight reduction upon once-daily administration to DIO mice. Compounds 5 and 10, with their relatively low Cmax and long Tmax, partially attenuated emesis in dogs compared with 1. These results indicate that optimization of pharmacokinetic properties of Y2R agonists is an effective strategy to alleviate emesis induced by Y2R agonism.  相似文献   
109.
In this report, we have focused our attention on identifying intracellular mammalian proteins that bind S100A12 in a Ca2+-dependent manner. Using S100A12 affinity chromatography, we have identified cytosolic NADP+-dependent isocitrate dehydrogenase (IDH), fructose-1,6-bisphosphate aldolase A (aldolase), glyceraldehyde-3-phosphate dehydrogenese (GAPDH), annexin V, S100A9, and S100A12 itself as S100A12-binding proteins. Immunoprecipitation experiments indicated the formation of stable complexes between S100A12 and IDH, aldolase, GAPDH, annexin V and S100A9 in vivo. Surface plasmon resonance analysis showed that the binding to S100A12, of S100A12, S100A9 and annexin V, was strictly Ca2+-dependent, whereas that of GAPDH and IDH was only weakly Ca2+-dependent. To localize the site of S100A12 interaction, we examined the binding of a series of C-terminal truncation mutants to the S100A12-immobilized sensor chip. The results indicated that the S100A12-binding site on S100A12 itself is located at the C-terminus (residues 87-92). However, cross-linking experiments with the truncation mutants indicated that residues 87-92 were not essential for S100A12 dimerization. Thus, the interaction between S100A12 and S100A9 or immobilized S100A12 should not be viewed as a typical S100 homo- or heterodimerization model. Ca2+-dependent affinity chromatography revealed that C-terminal residues 75-92 are not necessary for the interaction of S100A12 with IDH, aldolase, GAPDH and annexin V. To analyze the functional properties of S100A12, we studied its action in protein folding reactions in vitro. The thermal aggregation of IDH or GAPDH was facilitated by S100A12 in the absence of Ca2+, whereas in the presence of Ca2+ the protein suppressed the aggregation of aldolase to less than 50%. These results suggest that S100A12 may have a chaperone/antichaperone-like function which is Ca2+-dependent.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号