全文获取类型
收费全文 | 351篇 |
免费 | 29篇 |
专业分类
380篇 |
出版年
2023年 | 2篇 |
2022年 | 3篇 |
2021年 | 8篇 |
2020年 | 3篇 |
2019年 | 6篇 |
2018年 | 10篇 |
2017年 | 7篇 |
2016年 | 5篇 |
2015年 | 17篇 |
2014年 | 15篇 |
2013年 | 28篇 |
2012年 | 27篇 |
2011年 | 24篇 |
2010年 | 21篇 |
2009年 | 11篇 |
2008年 | 20篇 |
2007年 | 29篇 |
2006年 | 21篇 |
2005年 | 25篇 |
2004年 | 23篇 |
2003年 | 13篇 |
2002年 | 14篇 |
2001年 | 4篇 |
2000年 | 5篇 |
1999年 | 5篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1995年 | 3篇 |
1994年 | 2篇 |
1993年 | 7篇 |
1992年 | 1篇 |
1990年 | 6篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1986年 | 3篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 2篇 |
1981年 | 1篇 |
1975年 | 1篇 |
排序方式: 共有380条查询结果,搜索用时 17 毫秒
21.
How does the curvature of the upper beak bone reflect the overlying rhinotheca morphology? 下载免费PDF全文
Yukine Urano Kyo Tanoue Ryoko Matsumoto Soichiro Kawabe Tomoyuki Ohashi Shin‐ichi Fujiwara 《Journal of morphology》2018,279(5):636-647
The beak has independently been evolved accompanied by the edentulism in many tetrapod linages, including extant Testudinata and Aves, and its form and function have been greatly diversified. The beak is formed by beak bones and the overlying keratinous cover, although their profiles are different from each other. Therefore, it is difficult to reliably reconstruct the entire profile of the beak in extinct taxa, whose keratinous tissues are rarely preserved. For elucidation of the morphological relationship between beak bone and overlying keratinous cover, we compared the curvature distribution of the culminal profiles of the upper beak bone and the overlying keratinous cover (rhinotheca) with each other using CT‐scan, in 66 extant testudinatan and avian specimens (Aves: 33 genera, 24 families; Testudinata: 12 genera seven families). In both, rhinotheca and beak bone, the curvature of the profile was nearly constant rostral to a certain point, which was defined as the transition point, and the transition points of the rhinotheca and beak bone were close to each other. The profiles of the rhinotheca and beak bone rostral to their transition point were different in curvature and length. However, the ratio between the curvatures of rhinotheca and the beak bone strongly correlated with the arc angle of the rostral culminal profiles of the beak bone. The upper beak profile in extinct taxa is expected to be reconstructed more reliably using the abovementioned relationship between the beak bone and the rhinotheca. 相似文献
22.
Daimon T Kozaki T Niwa R Kobayashi I Furuta K Namiki T Uchino K Banno Y Katsuma S Tamura T Mita K Sezutsu H Nakayama M Itoyama K Shimada T Shinoda T 《PLoS genetics》2012,8(3):e1002486
Insect molting and metamorphosis are intricately governed by two hormones, ecdysteroids and juvenile hormones (JHs). JHs prevent precocious metamorphosis and allow the larva to undergo multiple rounds of molting until it attains the proper size for metamorphosis. In the silkworm, Bombyx mori, several "moltinism" mutations have been identified that exhibit variations in the number of larval molts; however, none of them have been characterized molecularly. Here we report the identification and characterization of the gene responsible for the dimolting (mod) mutant that undergoes precocious metamorphosis with fewer larval-larval molts. We show that the mod mutation results in complete loss of JHs in the larval hemolymph and that the mutant phenotype can be rescued by topical application of a JH analog. We performed positional cloning of mod and found a null mutation in the cytochrome P450 gene CYP15C1 in the mod allele. We also demonstrated that CYP15C1 is specifically expressed in the corpus allatum, an endocrine organ that synthesizes and secretes JHs. Furthermore, a biochemical experiment showed that CYP15C1 epoxidizes farnesoic acid to JH acid in a highly stereospecific manner. Precocious metamorphosis of mod larvae was rescued when the wild-type allele of CYP15C1 was expressed in transgenic mod larvae using the GAL4/UAS system. Our data therefore reveal that CYP15C1 is the gene responsible for the mod mutation and is essential for JH biosynthesis. Remarkably, precocious larval-pupal transition in mod larvae does not occur in the first or second instar, suggesting that authentic epoxidized JHs are not essential in very young larvae of B. mori. Our identification of a JH-deficient mutant in this model insect will lead to a greater understanding of the molecular basis of the hormonal control of development and metamorphosis. 相似文献
23.
24.
In Situ TEM Study of Volume Expansion in Porous Carbon Nanofiber/Sulfur Cathodes with Exceptional High‐Rate Performance 下载免费PDF全文
Zheng‐Long Xu Jian‐Qiu Huang Woon Gie Chong Xianying Qin Xiangyu Wang Limin Zhou Jang‐Kyo Kim 《Liver Transplantation》2017,7(9)
Although lithium sulfur batteries (LSBs) have attracted much interest owing to their high energy densities, synthesis of high‐rate cathodes and understanding their volume expansion behavior still remain challenging. Herein, electrospinning is used to prepare porous carbon nanofiber (PCNF) hosts, where both the pore volume and surface area are tailored by optimizing the sacrificial agent content and the activation temperature. Benefiting from the ameliorating functional features of high electrical conductivity, large pore volume, and Li ion permselective micropores, the PCNF/A550/S electrode activated at 550 °C exhibits a high sulfur loading of 71 wt%, a high capacity of 945 mA h g?1 at 1 C, and excellent high‐rate capability. The in situ transmission electron microscope examination reveals that the lithiation product, Li2S, is contained within the electrode with only ≈35% volume expansion and the carbon host remains intact without fracture. In contrast, the PCNF/A750/S electrode with damaged carbon spheres exhibits sulfur sublimation, a larger volume expansion of over 61%, and overflowing of Li2S, a testament to its poor cyclic stability. These findings provide, for the first time, a new insight into the correlation between volume expansion and electrochemical performance of the electrode, offering a potential design strategy to synthesize high‐rate and stable LSB cathodes. 相似文献
25.
Nakamura S Abe F Kawahigashi H Nakazono K Tagiri A Matsumoto T Utsugi S Ogawa T Handa H Ishida H Mori M Kawaura K Ogihara Y Miura H 《The Plant cell》2011,23(9):3215-3229
Seed dormancy is an adaptive mechanism and an important agronomic trait. Temperature during seed development strongly affects seed dormancy in wheat (Triticum aestivum) with lower temperatures producing higher levels of seed dormancy. To identify genes important for seed dormancy, we used a wheat microarray to analyze gene expression in embryos from mature seeds grown at lower and higher temperatures. We found that a wheat homolog of MOTHER OF FT AND TFL1 (MFT) was upregulated after physiological maturity in dormant seeds grown at the lower temperature. In situ hybridization analysis indicated that MFT was exclusively expressed in the scutellum and coleorhiza. Mapping analysis showed that MFT on chromosome 3A (MFT-3A) colocalized with the seed dormancy quantitative trait locus (QTL) QPhs.ocs-3A.1. MFT-3A expression levels in a dormant cultivar used for the detection of the QTL were higher after physiological maturity; this increased expression correlated with a single nucleotide polymorphism in the promoter region. In a complementation analysis, high levels of MFT expression were correlated with a low germination index in T1 seeds. Furthermore, precocious germination of isolated immature embryos was suppressed by transient introduction of MFT driven by the maize (Zea mays) ubiquitin promoter. Taken together, these results suggest that MFT plays an important role in the regulation of germination in wheat. 相似文献
26.
Nishi H Nakada T Kyo S Inoue M Shay JW Isaka K 《Molecular and cellular biology》2004,24(13):6076-6083
Hypoxia occurs during the development of the placenta in the first trimester and correlates with both trophoblast differentiation and the induction of telomerase activity through hTERT expression. We sought to determine the mechanism of regulation of hTERT expression during hypoxia. We show that hypoxia-inducible factor 1alpha (HIF-1alpha) and hTERT expression in the human placenta decrease with gestational age and that these are overexpressed in preeclamptic placenta, a major complication of pregnancy. Hypoxia not only transactivates the hTERT promoter activity but also enhances endogenous hTERT expression. The hTERT promoter region between -165 and +51 contains two HIF-1 consensus motifs, and in vitro reporter assays show that these are essential for hTERT transactivation by HIF-1. Introduction of an antisense oligonucleotide for HIF-1 diminishes hTERT expression during hypoxia, indicating that upregulation of hTERT by hypoxia is directly mediated through HIF-1. Our results provide persuasive evidence that the regulation of hTERT promoter activity by HIF-1 represents a mechanism for trophoblast growth during hypoxia and suggests that this may be a generalized response to hypoxia in various human disorders including resistance to cancer therapeutics by upregulating telomerase. 相似文献
27.
Very elastic PLCL [poly(L-lactide-co-epsilon-caprolactone), 50:50] copolymers were synthesized and extruded into porous tubular scaffolds (pore size 150 +/- 50 microm, porosity 90%) for the application to tissue engineering. The copolymers were basically random and amorphous. However, two T(g)'s (glass transition temperatures) were observed in dynamic mechanical thermal analysis and also in differential scanning calorimetry thermograms. Furthermore, microdomains (about 17 nm in size) were indicated on the small-angle X-ray scattering profile and finally confirmed by transmission electron microscopy. Therefore, the PLCL copolymer was probably composed of a soft matrix of mainly epsilon-caprolactone moieties and hard domains containing more L-lactide units to exhibit a rubberlike elasticity in virtue of the physically cross-linked structure. The smooth muscle cells seeded scaffolds were implanted into nude mice subcutaneously for up to 15 weeks to monitor the in vivo degradation. In addition, they were degraded in vitro in phosphate buffer solution (pH 7.4) for up to 1 year to compare the results each other. All the scaffolds degraded slowly in vivo and in vitro even in the form of a highly porous thin membrane. However, the degradation rate was somewhat faster for in vivo than for in vitro. This should be explained by enzymes that might have played a certain role in the degradation in the body. In addition, the epsilon-caprolactone moieties degraded faster than the L-lactide units did in these PLCL scaffolds, although their hydrophilicities are in the opposite order. This behavior appeared more prominently in the in vivo case. This should result from that the amorphous regions composed of mainly epsilon-caprolactone units might have been first attacked by water because water can penetrate into the amorphous regions easier than the hard domains containing more L-lactides. 相似文献
28.
Atsushi Ishihara Yumi Hashimoto Hisashi Miyagawa Kyo Wakasa 《Plant signaling & behavior》2008,3(9):714-716
Tryptophan (Trp)-related secondary metabolism has been implicated in the defense against pathogen infection and insect feeding in various gramineous species. Recently, we also reported that rice plant accumulated serotonin and tryptamine as well as their amide compounds coupled with phenolic acids in response to the infection by fungal pathogen. These compounds were likely to play an important role in the formation of physical barrier to the invading pathogens. To extend our study to elucidate the defensive role of Trp-derived secondary metabolism in gramineous plants, we examined in this study whether it is activated in response to herbivore attack as well. Third leaves of rice plant were fed on by third instar larvae of rice striped stem borer for 24 h or 48 h. The analysis of four Trp-derived metabolites including tryptamine, serotonin feruloyltryptamine (FerTry) and p-coumaroylserotonin (CouSer) by liquid chromatography coupled with tandem mass spectrometry revealed that their contents clearly increased in response to the larvae feeding. The respective amounts of tryptamine, serotonin, FerTry and CouSer in the larvae-fed leaves were 12-, 3.5-, 33- and 140-fold larger than those in control leaves 48 h after the start of feeding.Key words: rice, Oryza sativa, Gramineae, serotonin, secondary metabolism, rice striped stem borer, Chilo suppressalisPlants defend themselves from environmental stresses by utilizing secondary metabolism. One of major biological stresses that plants have to cope with is attack by herbivorous insects. In the interactions with herbivorous insects, various secondary metabolites that are derived from tryptophan (Trp) pathway have been shown to play defensive roles in plants including gramineous species. For example, benzoxazinone glucosides in wheat (Triticum aestivum), rye (Secale sereale) and maize (Zea mays) express toxic and antifeeding effects on herbivorous insects.1,2 Benzoxazinones are biosynthesized from indole-3-glycerol phosphate, an intermediate of Trp synthesis.3,4 Another example of those compounds is gramine in barley (Hordeum vulgare). Gramine is a Trp-rerived indole amine,5 and has been received attention in the resistance mainly against aphids on the basis of its toxicity and deterrence.6We recently found that Trp-derived secondary metabolism is also involved in defense responses of rice (Oryza sativa) leaves to infection by brown spot fungus (Bipolaris oryzae).7 The infection of the fungus activates Trp biosynthesis and accumulation of serotonin and of smaller amounts of tryptamine, feruloyltryptamine (FerTry) and p-coumaroylserotonin (CouSer). In addition, the enhancement of serotonin peroxidase activity and incorporation of serotonin in the cell walls were detected. Thus, it is very likely that that serotonin-derived materials deposit in cell walls after oxidative polymerization to constitute a part of physical defense system of rice, which may be reminiscent of the wound sloughing in animals. These findings prompted us to investigate whether Trp-related secondary metabolism is also involved in the defense of rice plant against the attack by insects, as in the cases of other gramineous plants mentioned above. While the response of plants to pathogenic infection is generally different from that to insect herbivory, Trp-derived secondary metabolites have occasionally been implicated in both responses.8–10 Here, we report the results of our study to examine the effects of herbivory by rice striped stem borer (Chilo suppressalis) on the Trp derived secondary metabolism in rice leaves.Rice (cv. Nipponbare) leaves were incubated with larvae of C. suppressalis in a feeding tube assembled according to Oikawa et al.,8 Aerial parts of two 12-day-old rice seedlings were excised, and their cutting ends were immersed in distilled water in a vial. Three third instar larvae of C. suppressalis were put on the leaves, and the leaves with larvae were covered by a plastic tube. For comparison, the control leaves were wounded by razor blade at the start of the incubation. After incubation for 24 h or 48 h with 16/8 h LD cycle at 28°C, the leaves were extracted with 10 volumes of 80% methanol, and analyzed by liquid chromatography coupled with tandem mass spectrometry in multiple reaction monitoring mode.As shown in Figure 1, the contents of tryptamine and serotonin increased along with time in the larvae-fed leaves. The respective contents of tryptamine and serotonin in the leaves were 12- and 3.5-fold larger than those in control leaves 48 h after the start of feeding. The accumulation of FerTry and CouSer was also observed after larvae feeding with the contents being 33- and 140-fold larger than those in control leaves, respectively. Their contents, however, were approximately 10-fold smaller than the corresponding amines.Open in a separate windowFigure 1Accumulation of Trp derived metabolites in the leaves attacked by rice striped stem borer. Chemical structures of analyzed compounds (A). The contents of tryptamine (B), serotonin (B), FerTry (C) and CouSer (D) were determined by LC-MS/MS analysis. The third leaves of 12-d-old rice seedlings were fed on by rice striped stem borer (brack bars) or wounded by razor blade as control (white bars). After incubation, the leaves were extracted by 80% methanol. The contents of metabolites at time 0 are represented as gray bars.In the interaction of rice plant with B. oryzae, serotonin was shown to be incorporated into cell walls as a part of physical defense system.7 In an analogous way, modification of cell walls by serotonin might function in sealing the sites injured by insect feeding to protect the leaves from desiccation, and opportunistic and insect-mediated infection by microorganisms. Indeed, at the cutting edge of the leaves, the formation of brown materials was observed. In addition, since serotonin is a neurotransmitter of insects and tryptamine has been indicated to be a neuroactive substance, their accumulation might directly affect behavior and physiology of some insects. High concentrations of tryptamine have been shown to express anti-oviposition activity toward Bemisia tabaci11 and anti-feeding activities toward Malacosoma disstria and Manduca sexta.12The low levels of serotonin, tryptamine and their amides in the control leaves suggest that these compounds are induced in response to some components produced during the interaction between the plant and the herbivore. In this relation, it has been shown that elicitors are present in the saliva of some herbivous insects, which induce volatile emission from the plant to attracts their natural enemies.13,14 Induction of Trp-derived secondary metabolites by the herbivore attack may likely be a result of recognition of some insect-derived molecules by rice leaves, similarly to the induction of volatile emission.The induced accumulation of indole amines and their hydroxycinnamic acid amides in the rice leaves attacked by C. suppressalis suggests that a common signaling pathway might be involved in the responses to pathogen infection and insect feeding. However, the composition of induced compounds was different between the responses to the two biological stresses. The content of tryptamine in the larvae-fed leaves was comparable to that reported in the B. oryzae-infected leaves, whereas the amount of serotonin (approximately 35 nmol/gFW) was much smaller than that in the infected leaves (approximately 250 nmol/gFW). This characteristic was similar to the response of rice leaves to methyl jasmonate (MeJA), which also induced accumulation of these Trp-derived secondary metabolites.7 The strong activation of the conversion of tryptamine to serotonin may require infection-specific signals.The serotonin accumulation in rice appears to be similar to the accumulation of gramine in barley in several aspects. Gramine accumulation has been demonstrated to be induced by either infection by pathogens9 or infestation by the aphid Schizaphis graminum.10 In addition, the gene encoding N-methyltransferase that catalyzes the final reaction in the gramine biosynthetic pathway is upregulated by MeJA, suggesting gramine synthesis is at least partly under the control of jasmonate signaling pathway.15,16 The inducible serotonin production may be an archetypal form of the biosynthesis of more complicated indole amine in barley. 相似文献
29.
30.
Bae JH Mun KC Park WK Lee SR Suh SI Baek WK Yim MB Kwon TK Song DK 《Biochemical and biophysical research communications》2002,290(5):1506-1512
We have investigated the protective effect of (-)-epigallocatechin gallate (EGCG) on alpha-amino-3-hydroxy-5-methyl-4-isoxazolo propionate (AMPA)-induced toxicity in cultured rat hippocampal neurons. Treatment of 24 h AMPA (10 microM) reduced the neuronal viability in both survival neuron counting and MTT reduction assay compared with control, with increase in cellular concentrations of hydrogen peroxide and malondialdehyde. These responses to AMPA were significantly blocked by co-treatments with EGCG (10 microM), which effect was very similar to the protective ability of a known antioxidant catalase (2000 U/ml). AMPA (50 microM) elicited the increase in intracellular calcium concentration ([Ca(2+)]i) on which EGCG significantly attenuated both peak amplitude and sustained nature of that [Ca(2+)]i increase in a dose-dependent manner. These data suggest that EGCG has a neuroprotective effect against AMPA through inhibition of AMPA-induced [Ca(2+)]i increase and consequent attenuation of reactive oxygen species production and lipid peroxidation as an antioxidant and a radical scavenger. 相似文献