全文获取类型
收费全文 | 318篇 |
免费 | 27篇 |
国内免费 | 1篇 |
专业分类
346篇 |
出版年
2023年 | 2篇 |
2022年 | 3篇 |
2021年 | 4篇 |
2020年 | 2篇 |
2019年 | 7篇 |
2017年 | 3篇 |
2016年 | 5篇 |
2015年 | 14篇 |
2014年 | 15篇 |
2013年 | 12篇 |
2012年 | 24篇 |
2011年 | 32篇 |
2010年 | 10篇 |
2009年 | 24篇 |
2008年 | 12篇 |
2007年 | 22篇 |
2006年 | 12篇 |
2005年 | 17篇 |
2004年 | 15篇 |
2003年 | 10篇 |
2002年 | 14篇 |
2001年 | 14篇 |
2000年 | 9篇 |
1999年 | 10篇 |
1998年 | 4篇 |
1997年 | 2篇 |
1995年 | 4篇 |
1994年 | 2篇 |
1993年 | 3篇 |
1992年 | 4篇 |
1991年 | 3篇 |
1990年 | 3篇 |
1984年 | 2篇 |
1983年 | 2篇 |
1976年 | 2篇 |
1974年 | 1篇 |
1973年 | 1篇 |
1972年 | 1篇 |
1971年 | 3篇 |
1970年 | 2篇 |
1969年 | 1篇 |
1968年 | 1篇 |
1967年 | 1篇 |
1965年 | 1篇 |
1959年 | 1篇 |
1955年 | 1篇 |
1954年 | 1篇 |
1953年 | 1篇 |
1952年 | 1篇 |
1948年 | 1篇 |
排序方式: 共有346条查询结果,搜索用时 15 毫秒
51.
Molecular phylogenetic analysis using genes coding for ribosomal RNA and proteins suggests that trypanosomes are monophyletic. Salivarian trypanosomes showing antigenic variation of the variant surface glycoprotein (VSG) diverged from non-Salivarian trypanosomes some 200-300 million years ago. Representatives of the non-Salivarian group, the mammalian parasite, Trypanosoma cruzi, and the fresh-water fish trypanosome, T. carassii, are characterised by surfaces dominated by carbohydrate-rich mucin-like glycoproteins, which are not subject to antigenetic variation. It is suggested that this latter surface structure is typical for non-Salivarian trypanosomes as well as members of the other Kinetoplastid suborder, the Bodonina. This would imply that at some point in time in the evolution of the Salivaria the highly abundant and comparatively poorly immunogenetic mucin-like molecules must have been replaced for equally abundant but highly immunogenic VSG-like molecules. While the selective advantage for such a unique transition is difficult to imagine, the subsequent diversification of VSG genes/molecules may have been comparatively straightforward because even the most limited form of antigenic variation would have extended the duration of infection in the vertebrate and thus would have increased the chance for transfer to the vector. 相似文献
52.
53.
This paper describes the chemical characterization of staphyloferrin B, a new complexone type siderophore isolated from low iron cultures of Staphylococcus hyicus DSM 20459. Purification of the very hydrophilic metabolite was achieved by anion exchange high performance liquid chromatography HPLC. Mass spectrometry showed a molecular mass of 448 amu. Hydrolysis with 8 mHCl revealed the presence of l-2,3-diaminopropionic acid, citrate, ethylenediamine and succinic semialdehyde. The connections between the four building blocks were determined by two-dimensional nuclear magnetic resonance measurements. UV/Vis and circular dichroism spectra are consistent with the proposed structure, which could also be confirmed by precursor feeding. The siderophore activity of staphyloferrin B was demonstrated by iron transport measurements. 相似文献
54.
Friedrich Koch-Nolte Friedrich Haag Rickmer Braren Maren Kühl Jan Hoovers Sriram Balasubramanian Fernando Bazan Heinz-Günter Thiele 《Genomics》1997,39(3):370
Mono-ADP-ribosylation is one of the posttranslational protein modifications regulating cellular metabolism, e.g., nitrogen fixation, in prokaryotes. Several bacterial toxins mono-ADP-ribosylate and inactivate specific proteins in their animal hosts. Recently, two mammalian GPI-anchored cell surface enzymes with similar activities were cloned (designated ART1 and ART2). We have now identified six related expressed sequence tags (ESTs) in the public database and cloned the two novel human genes from which these are derived (designatedART3andART4). The deduced amino acid sequences of the predicted gene products show 28% sequence identity to one another and 32–41% identity vs the muscle and T cell enzymes. They contain signal peptide sequences characteristic of GPI anchorage. Southern Zoo blot analyses suggest the presence of related genes in other mammalian species. By PCR screening of somatic cell hybrids and byin situhybridization, we have mapped the two genes to human chromosomes 4p14–p15.1 and 12q13.2–q13.3. Northern blot analyses show that these genes are specifically expressed in testis and spleen, respectively. Comparison of genomic and cDNA sequences reveals a conserved exon/intron structure, with an unusually large exon encoding the predicted mature membrane proteins. Secondary structure prediction analyses indicate conserved motifs and amino acid residues consistent with a common ancestry of this emerging mammalian enzyme family and bacterial mono(ADP-ribosyl)transferases. It is possible that the four human gene family members identified so far represent the “tip of an iceberg,” i.e., a larger family of enzymes that influences the function of target proteins via mono-ADP-ribosylation. 相似文献
55.
Prévost S Riemer S Fischer W Haag R Böttcher C Gummel J Grillo I Appavou MS Gradzielski M 《Biomacromolecules》2011,12(12):4272-4282
Polyplexes of short DNA-fragments (300 b.p., 100 nm) with tailor-made amine-based polycations of different architectures (linear and hyperbranched) were investigated in buffer solution as a function of the mixing ratio with DNA. The resulting dispersed polyplexes were characterized using small-angle neutron and X-ray scattering (SANS, SAXS) as well as cryo-TEM with respect to their mesoscopic structure and their colloidal stability. The linear polyimines form rather compact structures that have a high tendency for precipitation. In contrast, the hyperbranched polycation with enzymatic-labile pentaethylenehexamine arms (PEHA) yields polyplexes colloidally stable for months. Here the polycation coating of DNA results in a homogeneous dispersion based on a fractal network with low structural organization at low polycation amount. With increasing polycation, bundles of tens of aligned DNA rods appear that are interconnected in a fractal network with a typical correlation distance on the order of 100 nm, the average length of the DNA used. With higher organization comes a decrease in stability. The 3D network built by these beams can still exhibit some stability as long as the material concentration is large enough, but the structure collapses upon dilution. SAXS shows that the complexation does not affect the local DNA structure. Interestingly, the structural findings on the DNA polyplexes apparently correlate with the transfection efficiency of corresponding siRNA complexes. In general, these finding not only show systematic trends for the colloid stability, but may allow for rational approaches to design effective transfection carriers. 相似文献
56.
57.
Saskia Letz Christine Haag Egbert Schulze Karin Frank-Raue Friedhelm Raue Benjamin Hofner Bernhard Mayr Christof Sch?fl 《PloS one》2014,9(12)
Introduction
Activating calcium sensing receptor (CaSR) mutations cause autosomal dominant hypocalcemia (ADH) characterized by low serum calcium, inappropriately low PTH and relative hypercalciuria. Four activating CaSR mutations cause additional renal wasting of sodium, chloride and other salts, a condition called Bartter syndrome (BS) type 5. Until today there is no specific medical treatment for BS type 5 and ADH. We investigated the effects of different allosteric CaSR antagonists (calcilytics) on activating CaSR mutants.Methods
All 4 known mutations causing BS type 5 and five ADH mutations were expressed in HEK 293T cells and receptor signalling was studied by measurement of intracellular free calcium in response to extracellular calcium ([Ca2+]o). To investigate the effect of calcilytics, cells were stimulated with 3 mM [Ca2+]o in the presence or absence of NPS-2143, ATF936 or AXT914.Results
All BS type 5 and ADH mutants showed enhanced signalling activity to [Ca2+]o with left shifted dose response curves. In contrast to the amino alcohol NPS-2143, which was only partially effective, the quinazolinone calcilytics ATF936 and AXT914 significantly mitigated excessive cytosolic calcium signalling of all BS type 5 and ADH mutants studied. When these mutants were co-expressed with wild-type CaSR to approximate heterozygosity in patients, ATF936 and AXT914 were also effective on all mutants.Conclusion
The calcilytics ATF936 and AXT914 are capable of attenuating enhanced cytosolic calcium signalling activity of CaSR mutations causing BS type 5 and ADH. Quinazolinone calcilytics might therefore offer a novel treatment option for patients with activating CaSR mutations. 相似文献58.
Roles of RNA polymerase IV in gene silencing 总被引:2,自引:0,他引:2
Eukaryotes typically have three multi-subunit enzymes that decode the nuclear genome into RNA: DNA-dependent RNA polymerases I, II and III (Pol I, II and III). Remarkably, higher plants have five multi-subunit nuclear RNA polymerases: the ubiquitous Pol I, II and III, which are essential for viability; plus two non-essential polymerases, Pol IVa and Pol IVb, which specialize in small RNA-mediated gene silencing pathways. There are numerous examples of phenomena that require Pol IVa and/or Pol IVb, including RNA-directed DNA methylation of endogenous repetitive elements, silencing of transgenes, regulation of flowering-time genes, inducible regulation of adjacent gene pairs, and spreading of mobile silencing signals. Although biochemical details concerning Pol IV enzymatic activities are lacking, genetic evidence suggests several alternative models for how Pol IV might function. 相似文献
59.
Stefan Stich Marion Haag Thomas Häupl Orhan Sezer Michael Notter Christian Kaps Michael Sittinger Jochen Ringe 《Cell and tissue research》2009,336(2):225-236
In situ tissue engineering is a promising approach in regenerative medicine, with the possibility that adult stem or progenitor
cells will be guided chemotactically to a tissue defect and subsequently differentiate into the surrounding tissue type. Mesenchymal
stem cells (MSC) represent attractive candidate cells. Chemokines such as CXCL12 (SDF-1α) chemoattract MSC, but little is
known about the molecular processes involved in the chemotaxis and migration of MSC. In this study, MSC recruitment by CXCL12
was investigated by genome-wide microarray analysis. The dose-dependent migration potential of bone-marrow-derived MSC toward
CXCL12 was measured in an in vitro assay, with a maximum being recorded at a concentration of 1,000 nM CXCL12. Microarray
analysis of MSC stimulated with CXCL12 and non-stimulated controls showed 30 differentially expressed genes (24 induced and
six repressed). Pathway analysis revealed 11 differentially expressed genes involved in cellular movement and cytokine-cytokine
receptor interaction, including those for migratory inducers such as the chemokines CXCL8 and CCL26, the leukocyte inhibitory
factor, secretogranin II, and prostaglandin endoperoxide synthase 2. These results were confirmed by real-time polymerase
chain reaction for selected genes. The obtained data provide further insights into the molecular mechanisms involved in chemotactic
processes in cell migration and designate CXCL12 as a promising candidate for in situ recruitment in regenerative therapies.
Stefan Stich and Marion Haag contributed equally to this work.
This study was supported by the Investitionsbank Berlin and the European Regional Development Fund (grant: 10128098), Deutsche
Forschungsgemeinschaft (grant: DFG SI 569/7–1), and the Bundesministerium für Bildung und Forschung (Bioinside: 13N9817). 相似文献
60.
Aaruni Khanolkar Stacey M. Hartwig Brayton A. Haag David K. Meyerholz John T. Harty Steven M. Varga 《Journal of virology》2009,83(17):8946-8956
Severe acute respiratory syndrome (SARS) is characterized by substantial acute pulmonary inflammation with a high mortality rate. Despite the identification of SARS coronavirus (SARS-CoV) as the etiologic agent of SARS, a thorough understanding of the underlying disease pathogenesis has been hampered by the lack of a suitable animal model that recapitulates the human disease. Intranasal (i.n.) infection of A/J mice with the CoV mouse hepatitis virus strain 1 (MHV-1) induces an acute respiratory disease with a high lethality rate that shares several pathological similarities with SARS-CoV infection in humans. In this study, we examined virus replication and the character of pulmonary inflammation induced by MHV-1 infection in susceptible (A/J, C3H/HeJ, and BALB/c) and resistant (C57BL/6) strains of mice. Virus replication and distribution did not correlate with the relative susceptibilities of A/J, BALB/c, C3H/HeJ, and C57BL/6 mice. In order to further define the role of the host genetic background in influencing susceptibility to MHV-1-induced disease, we examined 14 different inbred mouse strains. BALB.B and BALB/c mice exhibited MHV-1-induced weight loss, whereas all other strains of H-2b and H-2d mice did not show any signs of disease following MHV-1 infection. H-2k mice demonstrated moderate susceptibility, with C3H/HeJ mice exhibiting the most severe disease. C3H/HeJ mice harbor a natural mutation in the gene that encodes Toll-like receptor 4 (TLR4) that disrupts TLR4 signaling. C3H/HeJ mice exhibit enhanced morbidity and mortality following i.n. MHV-1 infection compared to wild-type C3H/HeN mice. Our results indicate that TLR4 plays an important role in respiratory CoV pathogenesis.Severe acute respiratory syndrome (SARS) is a disease that was initially observed in 2002 and led to approximately 8,000 affected individuals in multiple countries with over 700 deaths (1, 24, 47, 48). The causative agent of SARS was subsequently identified as a novel coronavirus (CoV) termed SARS-CoV (8, 17, 22, 27, 32, 37). Although SARS-CoV infections following the initial outbreak in 2002 and 2003 have been limited primarily to laboratory personnel, the identification of an animal reservoir for the virus raises concern about the potential for future outbreaks (25).The pathogenesis of SARS has been difficult to study, in part because no animal model is able to fully recapitulate the morbidity and mortality observed in infected humans (35). Infection of a number of inbred mouse strains, including BALB/c, C57BL/6, and 129S, with primary human isolates of SARS-CoV results in the replication of the virus within the lung tissue without the subsequent development of readily apparent clinical disease (11, 16, 41). Infection of aged BALB/c mice results in clinically apparent disease that more closely mimics some aspects of SARS in humans (36). However, immune responses in aged mice are known to be altered (5, 15), and thus, the mechanisms that control the induction of disease may differ between adult and aged mice. Recent work has demonstrated that serial passage of SARS-CoV in mice results in a mouse adaptation that leads to more profound replication of the virus in the lung (28, 34). However, the time to death from this mouse-adapted SARS-CoV is 3 to 5 days, which is much more rapid than the time to mortality observed in fatal cases of SARS in humans.Phylogenetic analysis has revealed that SARS-CoV is most closely related to group 2 CoVs, which include the mouse hepatitis virus (MHV) family (39). Thus, information gathered by infection of mice with closely related members of the group 2 CoVs may further contribute to our understanding of SARS-CoV pathogenesis in humans. While many strains of MHV induce primarily hepatic and central nervous system diseases (6, 7, 12, 18, 21, 23, 40), a recent study demonstrated that intranasal (i.n.) infection of A/J mice with MHV type 1 (MHV-1) induces pulmonary injury that shares several pathological characteristics with SARS-CoV infection of humans (2, 3, 9, 29, 43).In the current study, we examined the relationship between MHV-1 replication in the lungs and the severity of disease in four inbred strains of mice: A/J, BALB/c, C57BL/6, and C3H/HeJ. Our results demonstrate that MHV-1 replicates to similar levels in the lung in each of these inbred strains of mice regardless of their relative levels of susceptibility, as measured by weight loss and clinical illness. Both A/J and C3H/HeJ mice exhibited enhanced weight loss and clinical illness following i.n. MHV-1 infection compared to BALB/c and C57BL/6 mice. Analysis of many different inbred mouse strains confirmed A/J and C3H/HeJ mice as the most susceptible to i.n. MHV-1 infection. Interestingly, C3H/HeJ mice harboring a natural mutation in the gene that encodes Toll-like receptor 4 (TLR4) that disrupts its normal function exhibited greatly increased morbidity and mortality after i.n. MHV-1 infection compared to wild-type C3H/HeN mice. Our results indicate that TLR4 plays an important role in respiratory CoV pathogenesis. 相似文献