首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2055篇
  免费   173篇
  国内免费   72篇
  2023年   17篇
  2022年   23篇
  2021年   42篇
  2020年   20篇
  2019年   45篇
  2018年   31篇
  2017年   42篇
  2016年   47篇
  2015年   104篇
  2014年   101篇
  2013年   109篇
  2012年   154篇
  2011年   151篇
  2010年   83篇
  2009年   81篇
  2008年   104篇
  2007年   93篇
  2006年   101篇
  2005年   74篇
  2004年   95篇
  2003年   81篇
  2002年   86篇
  2001年   74篇
  2000年   56篇
  1999年   48篇
  1998年   26篇
  1997年   21篇
  1996年   23篇
  1995年   11篇
  1994年   16篇
  1993年   16篇
  1992年   24篇
  1991年   17篇
  1990年   28篇
  1989年   22篇
  1988年   19篇
  1987年   13篇
  1986年   18篇
  1985年   17篇
  1984年   15篇
  1983年   14篇
  1981年   11篇
  1979年   12篇
  1978年   12篇
  1977年   13篇
  1976年   13篇
  1975年   15篇
  1974年   9篇
  1973年   8篇
  1969年   7篇
排序方式: 共有2300条查询结果,搜索用时 15 毫秒
91.
We herein report a peptide receptor-based bioelectronic nose (PRBN) that can determine the quality of seafood in real-time through measuring the amount of trimethylamine (TMA) generated from spoiled seafood. The PRBN was developed using single walled-carbon nanotube field-effect transistors (SWNT-FETs) functionalized with olfactory receptor-derived peptides (ORPs) which can recognize TMA and it allowed us to sensitively and selectively detect TMA in real-time at concentrations as low as 10fM. Utilizing these properties, we were able to not only determine the quality of three kinds of seafood (oyster, shrimp, and lobster), but were also able to distinguish spoiled seafood from other types of spoiled foods without any pretreatment processes. Especially, the use of small synthetic peptide rather than the whole protein allowed PRBNs to be simply manufactured through a single-step process and to be reused with high reproducibility due to no requirement of lipid bilayers. Furthermore, the PRBN was produced on a portable scale making it effectively useful for the food industry where the on-site measurement of seafood quality is required.  相似文献   
92.
In order to elucidate the structure-activity relationship of griseofulvin (1), (±)-6′-demethyl analog (3), 2′-demethoxy-6′-demethyldihydro analog (4), (±)-dechloro-6′-ethyl analog (5), (±)-dechloro-6′-epi-ethyl analog (6), (±)-6′-ethyl analog (7) and (±)-6′-epi-ethyl analog (8) were synthesized by a Diels-Alder cycloaddition of alkylidene ketones (16, 17, 18, 19 and 20) with modified 1,3-butadienes (21 or 22). Their biological activities were examined against fungi.  相似文献   
93.

Background

The development and progression of colorectal cancer (CRC) involve a complex process of multiple genetic changes. Tumor suppressor p53 is capable of determining the fate of CRC cells. However, the role of a p53-inducible modulator, ribosomal protein S27-like (RPS27L), in CRC is unknown.

Methods

Here, the differential expression of RPS27L was examined in the feces and colonic tissues of CRC patients, to explore its possible correlation with patient survival and to investigate the cellular mechanisms underlying their clinical outcomes. Eighty intermediate-stage CRC patients (42 at stage II and 38 at stage III) were divided into two groups according to their fecal RPS27L mRNA levels. The survival probabilities of the groups were estimated using the Kaplan–Meier method. The RPS27L protein in the colonic tissues of stage III patients with different prognoses was further examined immunohistochemically. RPS27L expression in LoVo cells was manipulated to examine the possible cellular responses in vitro.

Results

Elevated RPS27L expression, in either feces or tissues, was related to a better prognosis. In vitro, RPS27L-expressing LoVo cells ceased DNA synthesis and apoptotic activity while the expression of their DNA repair molecules was upregulated.

Conclusions

Elevated RPS27L may improve the prognoses of certain CRC patients by enhancing the DNA repair capacity of their colonic cells, and can be determined in feces. By integrating clinical, molecular, and cellular data, our study demonstrates that fecal RPS27L may be a useful index for predicting prognoses and guiding personalized therapeutic strategies, especially in patients with intermediate-stage CRC.  相似文献   
94.

Background

In response to the increased organ shortage, organs derived from donation after cardiac death (DCD) donors are becoming an acceptable option once again for clinical use in transplantation. However, transplant outcomes in cases where DCD organs are used are not as favorable as those from donation after brain death or living donors. Different methods of organ preservation are a key factor that may influence the outcomes of DCD kidney transplantation.

Methods

We compared the transplant outcomes in patients receiving DCD kidneys preserved by machine perfusion (MP) or by static cold storage (CS) preservation by conducting a meta-analysis. The MEDLINE, EMBASE and Cochrane Library databases were searched. All studies reporting outcomes for MP versus CS preserved DCD kidneys were further considered for inclusion in this meta-analysis. Odds ratios and 95% confidence intervals (CI) were calculated to compare the pooled data between groups that were transplanted with kidneys that were preserved by MP or CS.

Results

Four prospective, randomized, controlled trials, involving 175 MP and 176 CS preserved DCD kidney transplant recipients, were included. MP preserved DCD kidney transplant recipients had a decreased incidence of delayed graft function (DGF) with an odd ration of 0.56 (95% CI = 0.36–0.86, P = 0.008) compared to CS. However, no significant differences were seen between the two technologies in incidence of primary non-function, one year graft survival, or one year patient survival.

Conclusions

MP preservation of DCD kidneys is superior to CS in terms of reducing DGF rate post-transplant. However, primary non-function, one year graft survival, and one year patient survival were not affected by the use of MP or CS for preservation.  相似文献   
95.
The loss of muscle mass in alcoholic myopathy may reflect alcohol inhibition of myogenic cell differentiation into myotubes. Here, using a high content imaging system we show that ethanol inhibits C2C12 myoblast differentiation by reducing myogenic fusion, creating smaller and less complex myotubes compared with controls. Ethanol administration during C2C12 differentiation reduced MyoD and myogenin expression, and microarray analysis identified ethanol activation of the Notch signaling pathway target genes Hes1 and Hey1. A reporter plasmid regulated by the Hes1 proximal promoter was activated by alcohol treatment in C2C12 cells. Treatment of differentiating C2C12 cells with a gamma secretase inhibitor (GSI) abrogated induction of Hes1. On a morphological level GSI treatment completely rescued myogenic fusion defects and partially restored other myotube parameters in response to alcohol. We conclude that alcohol inhibits C2C12 myoblast differentiation and the inhibition of myogenic fusion is mediated by Notch pathway activation.  相似文献   
96.
There have been many trials to visualize smell using various techniques in order to objectively express the smell because information obtained from the sense of smell in human is very subjective. So far, well-trained experts such as a perfumer, complex and large-scale equipment such as GC-MS, and an electronic nose have played major roles in objectively detecting and recognizing odors. Recently, an optoelectronic nose was developed to achieve this purpose, but some limitations regarding the sensitivity and the number of smells that can be visualized still persist. Since the elucidation of the olfactory mechanism, numerous researches have been accomplished for the development of a sensing device by mimicking human olfactory system. Engineered olfactory cells were constructed to mimic the human olfactory system, and the use of engineered olfactory cells for smell visualization has been attempted with the use of various methods such as calcium imaging, CRE reporter assay, BRET, and membrane potential assay; however, it is not easy to consistently control the condition of cells and it is impossible to detect low odorant concentration. Recently, the bioelectronic nose was developed, and much improved along with the improvement of nano-biotechnology. The bioelectronic nose consists of the following two parts: primary transducer and secondary transducer. Biological materials as a primary transducer improved the selectivity of the sensor, and nanomaterials as a secondary transducer increased the sensitivity. Especially, the bioelectronic noses using various nanomaterials combined with human olfactory receptors or nanovesicles derived from engineered olfactory cells have a potential which can detect almost all of the smells recognized by human because an engineered olfactory cell might be able to express any human olfactory receptor as well as can mimic human olfactory system. Therefore, bioelectronic nose will be a potent tool for smell visualization, but only if two technologies are completed. First, a multi-channel array-sensing system has to be applied for the integration of all of the olfactory receptors into a single chip for mimicking the performance of human nose. Second, the processing technique of the multi-channel system signals should be simultaneously established with the conversion of the signals to visual images. With the use of this latest sensing technology, the realization of a proper smell-visualization technology is expected in the near future.  相似文献   
97.
Besides the open circuit voltage (VOC) deficit, fill factor (FF) is the second most significant parameter deficit for earth‐abundant kesterite solar cell technology. Here, various pathways for FF loss are discussed, with focus on the series resistance issue and its various contributing factors. Electrical and physical characterizations of the full range of bandgap (Eg = 1.0–1.5 eV) Cu2ZnSn(SxSe1?x)4 (CZTSSe) devices, as well as bare and exfoliated films with various S/(S + Se) ratios, are performed. High intensity Suns‐VOC measurement indicates a nonohmic junction developing in high bandgap CZTSSe. Grazing incidence X‐ray diffraction, Raman mapping, field emission scanning electron microscopy, and X‐ray photoelectron spectroscopy indicate the formation of Sn(S,Se)2, Mo(S,Se)2, and Zn(S,Se) at the high bandgap CZTSSe/Mo interface, contributing to the increased series resistance (RS) and nonohmic back contact characteristics. This study offers some clues as to why the record‐CZTSSe solar cells occur within a bandgap range centered around 1.15 eV and offers some direction for further optimization.  相似文献   
98.
The skin provides protection against environmental stress. However, intrinsic and extrinsic aging causes significant alteration to skin structure and components, which subsequently impairs molecular characteristics and biochemical processes. Here, we have conducted an immunohistological investigation and established the proteome profiles on nude mice skin to verify the specific responses during aging caused by different factors. Our results showed that UVB‐elicited aging results in upregulation of proliferating cell nuclear antigen and strong oxidative damage in DNA, whereas chronological aging abolished epidermal cell growth and increased the expression of caspase‐14, as well as protein carbonylation. Network analysis indicated that the programmed skin aging activated the ubiquitin system and triggered obvious downregulation of 14‐3‐3 sigma, which might accelerate the loss of cell growth capacity. On the other hand, UVB stimulation enhanced inflammation and the risk of skin carcinogenesis. Collectively, functional proteomics could provide large‐scale investigation of the potent proteins and molecules that play important roles in skin subjected to both intrinsic and extrinsic aging.  相似文献   
99.
100.
Anti-tumor CD8+ T cells are a key determinant for overall survival in patients following surgical resection for solid malignancies. Using a mouse model of cancer vaccination (adenovirus expressing melanoma tumor-associated antigen (TAA)—dopachrome tautomerase (AdDCT) and resection resulting in major surgical stress (abdominal nephrectomy), we demonstrate that surgical stress results in a reduction in the number of CD8+ T cell that produce cytokines (IFNγ, TNFα, Granzyme B) in response to TAA. This effect is secondary to both reduced proliferation and impaired T cell function following antigen binding. In a prophylactic model, surgical stress completely abrogates tumor protection conferred by vaccination in the immediate postoperative period. In a clinically relevant surgical resection model, vaccinated mice undergoing a positive margin resection with surgical stress had decreased survival compared to mice with positive margin resection alone. Preoperative immunotherapy with IFNα significantly extends survival in surgically stressed mice. Importantly, myeloid derived suppressor cell (MDSC) population numbers and functional impairment of TAA-specific CD8+ T cell were altered in surgically stressed mice. Our observations suggest that cancer progression may result from surgery-induced suppression of tumor-specific CD8+ T cells. Preoperative immunotherapies aimed at targeting the prometastatic effects of cancer surgery will reduce recurrence and improve survival in cancer surgery patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号