首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1901篇
  免费   165篇
  国内免费   72篇
  2138篇
  2023年   19篇
  2022年   22篇
  2021年   41篇
  2020年   20篇
  2019年   43篇
  2018年   31篇
  2017年   41篇
  2016年   43篇
  2015年   99篇
  2014年   97篇
  2013年   106篇
  2012年   148篇
  2011年   143篇
  2010年   79篇
  2009年   76篇
  2008年   98篇
  2007年   87篇
  2006年   82篇
  2005年   68篇
  2004年   90篇
  2003年   76篇
  2002年   73篇
  2001年   69篇
  2000年   51篇
  1999年   43篇
  1998年   23篇
  1997年   18篇
  1996年   22篇
  1995年   11篇
  1994年   16篇
  1993年   14篇
  1992年   22篇
  1991年   14篇
  1990年   25篇
  1989年   19篇
  1988年   19篇
  1987年   10篇
  1986年   16篇
  1985年   13篇
  1984年   15篇
  1983年   13篇
  1981年   10篇
  1979年   11篇
  1978年   8篇
  1977年   12篇
  1976年   12篇
  1975年   15篇
  1974年   8篇
  1972年   7篇
  1969年   7篇
排序方式: 共有2138条查询结果,搜索用时 0 毫秒
51.
The paradox of high substrate turnover occurring within the confines of a deep, narrow gorge through which acetylcholine must traverse to reach the catalytic site of acetylcholinesterase has suggested the existence of transient gorge enlargements that would enhance substrate accessibility. To establish a foundation for the experimental study of transient fluctuations in structure, site-directed labeling in conjunction with time-resolved fluorescence anisotropy were utilized to assess the possible involvement of the omega loop (Omega loop), a segment that forms the outer wall of the gorge. Specifically, the flexibility of three residues (L76C, E81C, and E84C) in the Cys69-Cys96 Omega loop and one residue (Y124C) across the gorge from the Omega loop were studied in the absence and presence of two inhibitors of different size, fasciculin and huperzine. Additionally, to validate the approach molecular dynamics was employed to simulate anisotropy decay of the side chains. The results show that the Omega loop residues are significantly more mobile than the non-loop residue facing the interior of the gorge. Moreover, fasciculin, which binds at the mouth of the gorge, well removed from the active site, decreases the mobility of 5-((((2-acetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid reporter groups attached to L76C and Y124C but increases the mobility of the reporter groups attached to E81C and E84C. Huperzine, which binds at the base of active-site gorge, has no effect on the mobility of reporter groups attached to L76C and Y124C but increases the mobility of the reporter groups attached to E81C and E84C. Besides showing that fluctuations of the Omega loop residues are not tightly coupled, the results indicate that residues in the Omega loop exhibit distinctive conformational fluctuations and therefore are likely to contribute to transient gorge enlargements in the non-liganded enzyme.  相似文献   
52.
53.
A 10-ns trajectory from a molecular dynamics simulation is used to examine the structure and dynamics of water in the active site gorge of acetylcholinesterase to determine what influence water may have on its function. While the confining nature of the deep active site gorge slows down and structures water significantly compared to bulk water, water in the gorge is found to display a number of properties that may aid ligand entry and binding. These properties include fluctuations in the population of gorge waters, moderate disorder and mobility of water in the middle and entrance to the gorge, reduced water hydrogen-bonding ability, and transient cavities in the gorge.  相似文献   
54.
We studied the mechanism of sphingosylphosphorylcholine (SPC)-induced contraction in feline ileal smooth muscle cells. Western blotting revealed that G protein subtypes of Gαi1, Gαi3 and Gαo existed in feline ileum. Gαi3 antibody penetration into permeabilized cells decreased SPC-induced contraction. In addition, incubation of [35S]guanosine 5′-O-(3-thiotriphosphate) ([35S]GTPγS) with membrane fraction increased its binding to Gαi3 subtype after SPC treatment, suggesting that the signalling pathways invoked by SPC were mediated by Gαi3 protein. MAPK kinase (MEK) inhibitor PD98059 blocked the contraction significantly, but p38 mitogen-activated protein kinase (MAPK) inhibitor SB202190 did not. Chelerythrine and neomycin also inhibited the contraction. However, cotreatment of PD98059 and chelerythrine showed no significant difference. Phosphorylation of p44/42 MAPK was increased by SPC treatment, which was reversed by pretreatment of inhibitors of signalling molecules that decreased SPC-induced contraction previously. The same result was obtained in the assay of MAPK activity.  相似文献   
55.
Elevation in intracellular Ca2+ acting via protein kinase C (PKC) is shown to regulate tight junction resistance in T84 cells, a human colon cancer line and a model Cl secretory epithelial cell. The Ca2+ ionophore A23187, which was used to increase the intracellular Ca2+ concentration, caused a decrease in tight junction resistance in a concentration- and time-dependent manner. Dual Na+/mannitol serosal-to-mucosal flux analysis performed across the T84 monolayers treated with 2 μm A23187 revealed that A23187 increased both fluxes and that in the presence of ionophore there was a linear relationship between the Na+ and mannitol fluxes with a slope of 56.4, indicating that the decrease in transepithelial resistance was due to a decrease in tight junction resistance. Whereas there was no effect of 0.1 μm A23187, 1 or 2 μm produced a 55% decrease in baseline resistance in 1 hr and 10 μm decreased resistance more than 80%. The A23187-induced decrease in tight junction resistance was partially reversible by washing 3 times with a Ringer's-HCO3 solution containing 1% BSA. The A23187 effect on resistance was dependent on intracellular Ca2+; loading the T84 cells with the intracellular Ca2+ chelator BAPTA significantly reduced the decrease in tight junction resistance caused by A23187. This intracellular Ca2+ effect was mediated by protein kinase C and not calmodulin. While the protein kinase C antagonist H-7 totally prevented the action of A23187 on tight junction resistance, the Ca2+/calmodulin inhibitor W13 did not have any effect. Sphingosine, another inhibitor of PKC, partially reduced the A23187-induced decline in tight junction resistance. The PKC agonist PMA mimicked the A23187 effect on resistance, although the effect was delayed up to 1 hr after exposure. In addition, however, PMA also caused an earlier increase in resistance, indicating it had an additional effect in addition to mimicking the effect of elevating Ca2+. The effects of a phospholipase inhibitor (mepacrine) and of inhibitors of arachidonic acid metabolism (indomethacin for the cyclooxygenase pathway, NDGA for the lipoxygenase pathway, and SKF 525A for the epoxygenase pathway) on the A23187 action were also examined. None of these agents altered the A23187-induced decrease in resistance. Monolayers exposed to 2 μm A23187 for 1 hr were stained with fluorescein conjugated phalloidin, revealing that neighboring cells did not part one from another and that A23187 did not have a detectable effect on distribution of F-actin in the perijunctional actomyosin ring. The results indicate that elevation in intracellular Ca2+ decreases tight junction resistance in the T84 monolayer, acting through protein kinase C by a mechanism which does not involve visible changes in the perijunctional actomyosin ring. Received: 14 July 1995/Revised: 25 September 1995  相似文献   
56.
滇金丝猴(Rhinopithecusbieti)现状及其保护对策研究   总被引:3,自引:0,他引:3  
滇金丝猴(Rhinopithecusbieti)是我国特有的珍稀濒危动物,生活在海拔3800~4300m的原始冷杉林中,但有时也会在4300~4700m的低矮灌丛、草甸和流石滩上活动达数小时之久,甚至能跨越近千米的无林高海拔地带,因而它们是海拔分布最高的非人灵长类。松萝是它们的主要食物,取食松萝的时间占总取食时间的91%。猴群活动范围可达近百平方公里。笔者在历时8年的野外考察中,已查明这一物种的全部现存自然种群只有13个,分布在云南的德钦、兰坪、潍西、丽江和西藏的芒康这五县境内,其现存种群数量为1000~1500只;所有现存自然种群几乎均处在相互隔离的状态,群间已不可能进行基因交流,充分表明它们已到达灭绝边缘。然而其栖息地内的商业伐木规模仍在继续扩大,周围的人口压力正在不断增加,各猴群均面临不同程度的偷猎压力。这一现状委实令人担忧。如何拯救这一“国宝”应引起我国保护学家和各级政府有关职能部门的重视  相似文献   
57.
光敏核不育水稻61kD特异性蛋白质的纯化和N—端序列分析   总被引:4,自引:0,他引:4  
王台  童哲 《Acta Botanica Sinica》1996,38(10):772-776
用制备型聚丙烯酰胺凝胶电泳和制备型等电聚焦纯化了曾报道的光敏核不育水稻 (Oryza sativa)农垦 58S叶绿体的特异性蛋白质 P2 ,得到 SDS- PAGE和等电聚焦 (IEF )纯的 P2。经 SDS- PAGE和 IEF测定 ,该纯蛋白质的分子量是 61 k D,等电点是 5.8。现称 P2为 P61。氨基酸序列分析表明 P61的 N-端氨基酸序列与水稻和大麦叶绿体 ATPaseβ亚基的 N-端氨基酸序列同源。  相似文献   
58.
Microbial degradation of synthetic chelating agents, such as EDTA and nitrilotriacetate (NTA), may help immobilizing radionuclides and heavy metals in the environment. The EDTA- and NTA-degrading bacterium BNC1 uses EDTA monooxygenase to oxidize NTA to iminodiacetate (IDA) and EDTA to ethylenediaminediacetate (EDDA). IDA- and EDDA-degrading enzymes have not been purified and characterized to date. In this report, an IDA oxidase was purified to apparent homogeneity from strain BNC1 by using a combination of eight purification steps. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single protein band of 40 kDa, and by using size exclusion chromatography, we estimated the native enzyme to be a homodimer. Flavin adenine dinucleotide was determined as its prosthetic group. The purified enzyme oxidized IDA to glycine and glyoxylate with the consumption of O2. The temperature and pH optima for IDA oxidation were 35°C and 8, respectively. The apparent Km for IDA was 4.0 mM with a kcat of 5.3 s−1. When the N-terminal amino acid sequence was determined, it matched exactly with that encoded by a previously sequenced hypothetical oxidase gene of BNC1. The gene was expressed in Escherichia coli, and the gene product as a C-terminal fusion with a His tag was purified by a one-step nickel affinity chromatography. The purified fusion protein had essentially the same enzymatic activity and properties as the native IDA oxidase. IDA oxidase also oxidized EDDA to ethylenediamine and glyoxylate. Thus, IDA oxidase is likely the second enzyme in both NTA and EDTA degradation pathways in strain BNC1.  相似文献   
59.
60.
The role of the actin cytoskeleton in calcium signaling in starfish oocytes   总被引:2,自引:0,他引:2  
Ca(2+) is the most universal second messenger in cells from the very first moment of fertilization. In all animal species, fertilized eggs exhibit massive mobilization of intracellular Ca(2+) to orchestrate the initial events of development. Echinoderm eggs have been an excellent model system for studying fertilization and the cell cycle due to their large size and abundance. In preparation for fertilization, the cell cycle-arrested oocytes must undergo meiotic maturation. Studies of starfish oocytes have shown that Ca(2+) signaling is intimately involved in this process. Our knowledge of the molecular mechanism of meiotic maturation and fertilization has expanded greatly in the past two decades due to the discovery of cell cycle-related kinases and Ca(2+)-mobilizing second messengers. However, the molecular details of their actions await elucidation of other cellular elements that assist in the creation and transduction of Ca(2+) signals. In this regard, the actin cytoskeleton, the receptors for second messengers and the Ca(2+)-binding proteins also require more attention. This article reviews the physiological significance and the mechanism of intracellular Ca2+ mobilization in starfish oocytes during maturation and fertilization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号