首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   418篇
  免费   26篇
  国内免费   4篇
  2024年   2篇
  2023年   6篇
  2022年   18篇
  2021年   26篇
  2020年   18篇
  2019年   22篇
  2018年   21篇
  2017年   20篇
  2016年   18篇
  2015年   24篇
  2014年   25篇
  2013年   28篇
  2012年   30篇
  2011年   32篇
  2010年   16篇
  2009年   17篇
  2008年   12篇
  2007年   10篇
  2006年   12篇
  2005年   11篇
  2004年   16篇
  2003年   12篇
  2002年   5篇
  2001年   6篇
  2000年   3篇
  1999年   5篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   5篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1973年   1篇
  1971年   1篇
  1966年   2篇
排序方式: 共有448条查询结果,搜索用时 906 毫秒
11.
Neurochemical Research - Alzheimer's disease (AD) is age-dependent neurological disorder with progressive loss of cognition and memory. This multifactorial disease is characterized by...  相似文献   
12.
Plasmonics - This paper investigates the behavior of the surface plasmon polaritons (SPPs) on dielectric-metal interface using Ag thin film on glass substrate. The Kretschman configuration, which...  相似文献   
13.
A series of 15 previously reported N4-substituted isatin-3-thiosemicarbazones 3a-o has been screened for cytotoxic, antibacterial, antifungal and urease inhibitory activities. Compounds 3b, 3e and 3n proved to be active in cytotoxicity assay; 3e exhibited a high degree of cytotoxic activity (LD50 = 1.10 × 10? 5 M). Compound 3h exhibited significant antibacterial activity against B. subtilis, whereas compounds 3a, 3k and 3l displayed significant antifungal activity against one or more fungal strains i.e. T. longifusus, A. flavus and M. canis. In human urease enzyme inhibition assay, compounds 3g, 3k and 3m proved to be the most potent inhibitors, exhibiting relatively pronounced inhibition of the enzyme. These compounds, being non-toxic, could be potential candidates for orally effective therapeutic agents to treat certain clinical conditions induced by bacterial ureases like H. pylori urease. This study presents the first example of inhibition of urease by isatin-thiosemicarbazones and as such provides a solid basis for further research on such compounds to develop more potent inhibitors.  相似文献   
14.
15.
We present a new molecular dynamics method for studying the dynamics of open systems. The method couples a classical system to a chemical potential reservior. In the formulation, following the extended system dynamics approach, we introduce a variable, v to represent the coupling to the chemical potential reservoir. The new variable governs the dynamics of the variation of number of particles in the system. The number of particles is determined by taking the integer part of v. The fractional part of the new variable is used to scale the potential energy and the kinetic energy of an additional particle: i.e., we introduce a fractional particle. We give the ansatz Lagrangians and equations of motion for both the isothermal and the adiabatic forms of grand molecular dynamics. The averages calculated over the trajectories generated by these equations of motion represent the classical grand canonical ensemble (μVT) and the constant chemical potential adiabatic ensemble (μVL) averages, respectively. The microcanonical phase space densities of the adiabatic and isothermal forms the molecular dynamics method are shown to be equivalent to adiabatic constant chemical potential ensemble, and grand canonical ensemble partition functions. We also discuss the extension to multi-component systems, molecular fluids, ionic solutions and the problems and solutions associated with the implementation of the method. The statistical expressions for thermodynamic functions such as specific heat; adiabatic bulk modulus, Grüneissen parameter and number fluctuations are derived. These expressions are used to analyse trajectories of constant chemical potential systems.  相似文献   
16.
The molecular basis of insulin resistance induced by HIV protease inhibitors (HPIs) remains unclear. In this study, Chinese hamster ovary cells transfected with high levels of human insulin receptor (CHO‐IR) and 3T3‐L1 adipocytes were used to elucidate the mechanism of this side effect. Indinavir and nelfinavir induced a significant decrease in tyrosine phosphorylation of the insulin receptor β‐subunit. Indinavir caused a significant increase in the phosphorylation of insulin receptor substrate‐1 (IRS‐1) on serine 307 (S307) in both CHO‐IR cells and 3T3‐L1 adipocytes. Nelfinavir also inhibited phosphorylation of Map/ERK kinase without affecting insulin‐stimulated Akt phosphorylation. Concomitantly, levels of protein tyrosine phosphatase 1B (PTP1B), suppressor of cytokines signaling‐1 and ‐3 (SOCS‐1 and ‐3), Src homology 2B (SH2B) and adapter protein with a pleckstrin homology domain and an SH2 domain (APS) were not altered significantly. When CHO‐IR cells were pre‐treated with sodium salicylate (NaSal), the effects of indinavir on tyrosine phosphorylation of the IR β‐subunit and phosphorylation of IRS‐1 at S307 were abrogated. These data suggest a potential role for the NFκB pathway in insulin resistance induced by HPIs. J. Cell. Biochem. 114: 1729–1737, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
17.
18.
Cancer is a multi‐faceted disease comprised of a combination of genetic, epigenetic, metabolic and signalling aberrations which severely disrupt the normal homoeostasis of cell growth and death. Rational developments of highly selective drugs which specifically block only one of the signalling pathways have been associated with limited therapeutic success. Multi‐targeted prevention of cancer has emerged as a new paradigm for effective anti‐cancer treatment. Platycodin D, a triterpenoid saponin, is one the major active components of the roots of Platycodon grandiflorum and possesses multiple biological and pharmacological properties including, anti‐nociceptive, anti‐atherosclerosis, antiviral, anti‐inflammatory, anti‐obesity, immunoregulatory, hepatoprotective and anti‐tumour activities. Recently, the anti‐cancer activity of platycodin D has been extensively studied. The purpose of this review was to give our perspectives on the current status of platycodin D and discuss its anti‐cancer activity and molecular mechanisms which may help the further design and conduct of pre‐clinical and clinical trials to develop it successfully into a potential lead drug for oncological therapy. Platycodin D has been shown to fight cancer by inducing apoptosis, cell cycle arrest, and autophagy and inhibiting angiogenesis, invasion and metastasis by targeting multiple signalling pathways which are frequently deregulated in cancers suggesting that this multi‐target activity rather than a single effect may play an important role in developing platycodin D into potential anti‐cancer drug.  相似文献   
19.
The present study was conducted to elucidate the role of phytobeneficial bacteria to control the cellular oxidative damage in maize (Zea mays L.) plants caused by salinity. Bacteria were isolated from the rhizosphere of kallar grass (Leptochloa fusca L.) through serial dilution method and taxonomically identified on the basis of their 16S ribosomal RNA gene sequencing. In vitro phosphate solubilization, indole-3-acetic acid (IAA) synthesis, and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity were evaluated by solubilization index measurement, colorimetric method, and turbidity assay, respectively. In the pot experiment, the impact of single and mixed inoculation of these strains at four levels (0, 50, 100, and 200 mM) of salt stress was evaluated in terms of growth and physiological response of maize plants to salinity. The bacterial strains (STN-1, STN-5, and STN-14) were taxonomically classified as Staphylococcus spp. At 5% NaCl level, the strains demonstrated substantial potential for phosphate solubilization, ACC deaminase activity, and IAA production both with and without tryptophan. The inoculation of strains STN-1, STN-5, and mixed inoculation resulted in substantial growth improvement of maize plants along with increased antioxidant enzyme activity and decreased levels of reactive oxygen species. In addition, single inoculation of STN-1 and STN-5 along with mixed inoculation augmented the uptake of N, P, K, and Ca+2 and reduced Na+ uptake. Current results demonstrated that the strains STN-1 and STN-5 modulated stress-responsive mechanisms and regulated ion balance in induced salinity to promote maize growth.  相似文献   
20.
Lead (Pb) is a toxic heavy metal causing serious health risks to humans and animals. In the present study, cotton (Gossypium hirsutum L.) shells powder was used as adsorbent for the treatment of synthetic Pb-contaminated water. The batch scale biosorption capacity of cotton shells powder was evaluated to study the effects of Pb concentrations, adsorbent doses and contact time at constant pH (6) and temperature (25?°C). Results revealed that sorption of Pb increased (q?=?0.09–9.60?mg/g) with increasing Pb concentration (1–15?mg/L) and contact time (15–90?min) while decreasing adsorbent dose (1–0.1?g/100?mL). The maximum Pb removal (90%) was achieved at Pb concentration (1?mg/L), contact time (90?min) and adsorbent dose (1?g/100?mL). Freundlich isotherm model proved best fit for Pb sorption (R2?=?0.99). The cotton shells powder has microporous structure confirmed by SEM, and has BET surface area (45 m2/g) and pore size (2.3 µm). These surface moieties along with various functional groups (C-H, C-O, C=O, O-H, S=O) confirmed by FTIR analysis might involve in Pb removal by complexation and ion exchange mechanisms. The cotton shells powder biomass could be considered as promising adsorbent for the removal of Pb from contaminated water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号