首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   372篇
  免费   19篇
  国内免费   1篇
  392篇
  2024年   1篇
  2023年   3篇
  2022年   10篇
  2021年   17篇
  2020年   7篇
  2019年   8篇
  2018年   12篇
  2017年   16篇
  2016年   11篇
  2015年   24篇
  2014年   16篇
  2013年   33篇
  2012年   37篇
  2011年   38篇
  2010年   12篇
  2009年   13篇
  2008年   18篇
  2007年   14篇
  2006年   25篇
  2005年   14篇
  2004年   10篇
  2003年   8篇
  2002年   9篇
  2001年   7篇
  2000年   7篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   6篇
  1990年   1篇
  1989年   2篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有392条查询结果,搜索用时 15 毫秒
351.
Members of the plant glycine-rich RNA-binding proteins (GR-RBPs) family have been reported in flowering, development, circadian rhythms, biotic and abiotic stresses. Particularly, GR-RBPs are reported to function as RNA chaperones, promoting growth and acclimation during cold shock. It is indispensable to further question the efficacy and mechanism of GR-RBPs under various environmental strains. Monitoring the expression of stress-regulated proteins under stress conditions has been a beneficial strategy to study their functional roles. In an effort to elucidate the NtGR-RBP1 function, stress markers such as salinity, drought, low temperature and heat stresses were studied. The NtGR-RBP1 gene was expressed in E. coli followed by the exposure to stress conditions. Recombinant E. coli expressing NtGR-RBP1 were more tolerant to stresses, e.g., salinity, drought, cold and heat shock. Recombinants exhibited higher growth rates compared to control in spot assays. The tolerance was further confirmed by monitoring the growth in liquid culture assays. Cells expressing NtGR-RBP1 under salt (500 mM NaCl), drought (20% PEG), cold (4 and 20 °C) and heat stresses (50 °C) had enhanced growing ability and better endurance. Our study supports the notion that the protective role of NtGR-RBP1 may contribute to growth and survival during diverse environmental stresses.  相似文献   
352.
Cyclase-associated protein (CAP) is an evolutionarily conserved regulator of the G-actin/F-actin ratio and, in yeast, is involved in regulating the adenylyl cyclase activity. We show that cell polarization, F-actin organization, and phototaxis are altered in a Dictyostelium CAP knockout mutant. Furthermore, in complementation assays we determined the roles of the individual domains in signaling and regulation of the actin cytoskeleton. We studied in detail the adenylyl cyclase activity and found that the mutant cells have normal levels of the aggregation phase-specific adenylyl cyclase and that receptor-mediated activation is intact. However, cAMP relay that is responsible for the generation of propagating cAMP waves that control the chemotactic aggregation of starving Dictyostelium cells was altered, and the cAMP-induced cGMP production was significantly reduced. The data suggest an interaction of CAP with adenylyl cyclase in Dictyostelium and an influence on signaling pathways directly as well as through its function as a regulatory component of the cytoskeleton.  相似文献   
353.
Rab small GTPases are the master regulators of intracellular trafficking in eukaryotes. They mediate spatial and temporal recruitment of effector proteins to distinct cellular compartments through GTP-induced changes in their conformation. Despite numerous structural studies, the molecular basis for Rab/effector specificity and subsequent biological activity remains poorly understood. Rab25, also known as Rab11c, which is epithelial-specific, has been heavily implicated in ovarian cancer development and independently appears to act as a tumour suppressor in the context of a distinct subset of carcinomas. Here, we show that Rab25 associates with FIP2 and can recruit this effector protein to endosomal membranes. We report the crystal structure of Rab25 in complex with the C-terminal region of FIP2, which consists of a central dimeric FIP2 coiled-coil that mediates a heterotetrameric Rab25-(FIP2)2-Rab25 complex. Thermodynamic analyses show that, despite a relatively conserved interface, FIP2 binds to Rab25 with an approximate 3-fold weaker affinity than to Rab11a. Reduced affinity is mainly associated with lower enthalpic gains for Rab25:FIP2 complex formation, and can be attributed to subtle differences in the conformations of switch 1 and switch 2. These cellular, structural and thermodynamic studies provide insight into the Rab11/Rab25 subfamily of small GTPases that regulate endosomal trafficking pathways in eukaryotes.  相似文献   
354.
KBrO3-mediated renal injury and hyperproliferative response in Wistar rats. In this communication, we report the efficacy of Nymphaea alba on KBrO3 (125 mg/kg body weight, intraperitoneally) caused reduction in renal glutathione content, renal antioxidant enzymes and phase-II metabolising enzymes with enhancement in xanthine oxidase, lipid peroxidation, gamma-glutamyl transpeptidase and hydrogen peroxide (H202). It also induced blood urea nitrogen, serum creatinine and tumor promotion markers, viz., ornithine decarboxylase (ODC) activity and DNA synthesis. Treatment of rats with Nymphaea alba (100 and 200 mg/kg body weight) one hour before KBrO3 (125 mg/kg body weight, i.p.) resulted in significant decreases in xanthine oxidase (P < 0.05), lipid peroxidation, gamma-glutamyl transpeptidase, H202 generation, blood urea nitrogen, serum creatinine, renal ODC activity and DNA synthesis (P < 0.001). Renal glutathione content, glutathione metabolizing enzymes and antioxidant enzymes were also recovered to significant levels (P < 0.001). These results show that Nymphaea alba acts as chemopreventive agent against KBrO3-mediated renal injury and hyperproliferative response.  相似文献   
355.
D609 (tricyclodecan-9-yl-xanthogenate) is a phosphatidylcholine-specific phospholipase C inhibitor that also has been reported to protect rodents against oxidative damage caused by lethal doses of ionizing radiation. We previously showed that D609 mimics glutathione. D609 has a free thiol group, which upon oxidation forms a disulfide. The resulting dixanthate is a substrate for glutathione reductase, regenerating D609. Recent studies from our laboratory have also shown that D609 reduces the Alzheimer amyloid beta-peptide (1-42)-induced oxidative stress and cytotoxicity in neuronal cell culture. The present study was undertaken to test the hypothesis that D609 would provide neuroprotection against free radical oxidative stress in vivo. Synaptosomes isolated from gerbils, previously injected intraperitoneally (ip) with D609, were treated with the oxidants Fe2+/H2O2 or 2,2-azobis-(2-amidinopropane) dihydrochloride (AAPH), which produce free radicals. Synaptosomes isolated from the gerbils ip injected with D609 and treated with Fe2+/H2O2 or AAPH showed significant reduction in reactive oxygen species, levels of protein carbonyl, protein-bound hydroxynonenal (a lipid peroxidation product), and 3-nitrotyrosine (another marker of protein oxidation formed by reaction of tyrosine residues with peroxynitrite) compared to oxidative stress in synaptosomes isolated from gerbils that were injected with saline, but treated with Fe2+/H2O2 or AAPH. These results are discussed with reference to the potential use of this brain-accessible glutathione mimetic in the treatment of oxidative stress-related neurodegenerative disorders.  相似文献   
356.
We report here the identification and characterization of a novel gene (AUTS2) that spans the 7q11.2 breakpoint in a monozygotic twin pair concordant for autism and a t(7;20) (q11.2; p11.2) translocation. AUTS2 is 1.2 Mb and has 19 exons. The predicted protein is 1295 amino acids and does not correspond to any known protein. DNA sequence analysis of autism subjects and controls revealed 22 biallelic polymorphic sites. For all sites, both alleles were observed in both cases and controls. Thus no autism-specific mutation was observed. Association analysis with two exonic polymorphic sites and linkage analysis of four dinucleotide repeat markers, two within and two flanking AUTS2, was negative. Thus, although it is unlikely that AUTS2 is an autism susceptibility gene for idiopathic autism, it may be the gene responsible for the disorder in the twins studied here.  相似文献   
357.
A series of N,N'-diphenyl and N-naphthyl-N'-phenyl guanidine derivatives was synthesized as potential N-methyl-D-aspartate (NMDA) receptor positron emission tomography (PET) ligands. The affinity of the different compounds was determined using in vitro receptor binding assays, and their log P values were estimated using HPLC analysis. The effect of N'-3 and N'-3,5 substitution on affinity and lipophilicity was examined. The K(i) values ranged from 1.87 to 839nM, while log P values between 1.22 and 2.88 were observed.  相似文献   
358.
A single dose of CCl4 (1 ml/kg body weight, po in corn oil) increased the levels of SGOT (serum glutamate oxaloacetate transaminase), SGPT (serum glutamate pyruvate transaminase), LDH (lactate dehydrogenase), glutathione-S-transferase and depletion in reduced glutathione, glutathione peroxidase and glutathione reductase. It also caused enhancement in the levels of lipid peroxidation (LPO) and DNA synthesis. There was also pathological deterioration of hepatic tissue as evident from multivacuolated hepatocytes containing fat globules around central vein. The pretreatment of E. officinalis for 7 consecutive days showed a profound pathological protection to liver cell as depicted by univacuolated hepatocytes. Pretreatment with E. officinalis at doses of 100 and 200 mg/kg body weight, prior to CCl4 intoxication showed significant reduction in the levels of SGOT, SGPT, LDH, glutathione-S-transferase, LPO and DNA synthesis. There was also increase in reduced glutathione, glutathione peroxidase and glutathione reductase. The results suggest that E. officinalis inhibits hepatic toxicity in Wistar rats.  相似文献   
359.
SnoaL belongs to a family of small polyketide cyclases, which catalyse ring closure steps in the biosynthesis of polyketide antibiotics produced in Streptomyces. Several of these antibiotics are among the most used anti-cancer drugs currently in use. The crystal structure of SnoaL, involved in nogalamycin biosynthesis, with a bound product, has been determined to 1.35 A resolution. The fold of the subunit can be described as a distorted alpha+beta barrel, and the ligand is bound in the hydrophobic interior of the barrel. The 3D structure and site-directed mutagenesis experiments reveal that the mechanism of the intramolecular aldol condensation catalysed by SnoaL is different from that of the classical aldolases, which employ covalent Schiff base formation or a metal ion cofactor. The invariant residue Asp121 acts as an acid/base catalyst during the reaction. Stabilisation of the enol(ate) intermediate is mainly achieved by the delocalisation of the electron pair over the extended pi system of the substrate. These polyketide cyclases thus form of family of enzymes with a unique catalytic strategy for aldol condensation.  相似文献   
360.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号