首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   368篇
  免费   19篇
  国内免费   1篇
  2023年   3篇
  2022年   7篇
  2021年   17篇
  2020年   7篇
  2019年   8篇
  2018年   12篇
  2017年   16篇
  2016年   11篇
  2015年   24篇
  2014年   16篇
  2013年   33篇
  2012年   37篇
  2011年   38篇
  2010年   12篇
  2009年   13篇
  2008年   18篇
  2007年   14篇
  2006年   25篇
  2005年   14篇
  2004年   10篇
  2003年   8篇
  2002年   9篇
  2001年   7篇
  2000年   7篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   6篇
  1990年   1篇
  1989年   2篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有388条查询结果,搜索用时 15 毫秒
21.
Introduction – Quality control in the pharmaceutical and phytopharmaceutical industries requires fast and reliable methods for the analysis of raw materials and final products. Objective – This study evaluates different analytical approaches in order to recognise the most suitable technique for the analysis of carbohydrates in herbal drug preparations. Methodology – The specific focus of the study is on thin‐layer chromatography (TLC), gas chromatography (GC), and a newly developed mass spectrometric method, i.e. matrix free material enhanced laser desorption/ionisation time of flight mass spectrometry (mf‐MELDI‐MS). Samples employed in the study were standards and microwave‐assisted water extracts from Quercus. Results – TLC analysis proved the presence of mono‐, di‐ and trisaccharides within the biological sample and hinted at the existence of an unknown carbohydrate of higher oligomerisation degree. After evaluation of different derivatisation techniques, GC‐MS confirmed data obtained via TLC for mono‐ to trisaccharides, delivering additionally quantified values under a considerable amount of time. A carbohydrate of higher oligomerisation degree could not be found. The application of mf‐MELDI‐MS further confirmed the presence of carbohydrates up to trisaccharides, also hinting at the presence of a form of tetrasaccharide. Besides this information, mf‐MELDI‐MS delivered further data about other substances present in the extract. Quantitative determination resulted in 1.750, 1.736 and 0.336 mg/mL for glucose, sucrose and raffinose respectively. Conclusion – Evaluation of all three techniques employed, clearly proved the heightened performance of mf‐MELDI‐MS for the qualitative analysis of complex mixtures, as targets do not need modification and analysis requires only a few minutes. In addition, GC‐MS is suitable for quantitative analysis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
22.
Biliverdin reductase-A is a pleiotropic enzyme involved not only in the reduction of biliverdin-IX-alpha into bilirubin-IX-alpha, but also in the regulation of glucose metabolism and cell growth secondary to its serine/threonine/tyrosine kinase activity. Together with heme oxygenase, whose metabolic role is to degrade heme into biliverdin-IX-alpha, it forms a powerful system involved in the cell stress response during neurodegenerative disorders. In this paper, an up-regulation of the biliverdin reductase-A protein levels was found in the hippocampus of the subjects with Alzheimer disease and arguably its earliest form, mild cognitive impairment. Moreover a significant reduction in the phosphorylation of serine, threonine and tyrosine residues of biliverdin reductase-A was found, and this was paralleled by a marked reduction in its reductase activity. Interestingly, the levels of both total and phosphorylated biliverdin reductase-A were unchanged as well as its enzymatic activity in the cerebella. These results demonstrated a dichotomy between biliverdin reductase-A protein levels and activity in the hippocampus of subjects affected by Alzheimer disease and mild cognitive impairment, and this effect likely is attributable to a reduction in the phosphorylation of serine, threonine and tyrosine residues of biliverdin reductase-A. Consequently, not just the increased levels of biliverdin reductase-A, but also its changed activity and phosphorylation state, should be taken into account when considering potential biomarkers for Alzheimer disease and mild cognitive impairment.  相似文献   
23.
Doxorubicin (DOX), an anthracycline used to treat a variety of cancers, is known to generate intracellular reactive oxygen species. Moreover, many patients who have undergone chemotherapy complain of cognitive dysfunction often lasting years after cessation of the chemotherapy. Previously, we reported that intraperitoneal administration of DOX led to elevated TNF-α and oxidative stress in the plasma and brain of mice. However, the mechanisms involved in nontargeted tissue damage remain unknown. In this study, we measured plasma oxidative stress and cytokine levels in patients treated with DOX. We observed increased plasma protein carbonylation and elevation of TNF-α 6 h after DOX administration in the context of multiagent chemotherapy regimens. Importantly, patients not treated coincidentally with 2-mercaptoethane sulfonate (MESNA) showed statistically significantly increased plasma protein-bound 4-hydroxynonenal, whereas those who had been coincidentally treated with MESNA as part of their multiagent chemotherapy regimen did not, suggesting that concomitant administration of the antioxidant MESNA with DOX prevents intravascular oxidative stress. We demonstrate in a murine model that MESNA suppressed DOX-induced increased plasma oxidative stress indexed by protein carbonyls and protein-bound HNE, and also suppressed DOX-induced increased peripheral TNF-α levels. A direct interaction between DOX and MESNA was demonstrated by MESNA suppression of DOX-induced DCF fluorescence. Using redox proteomics, we identified apolipoprotein A1 (APOA1) in both patients and mice after DOX administration as having increased specific carbonyl levels. Macrophage stimulation studies showed that oxidized APOA1 increased TNF-α levels and augmented TNF-α release by lipopolysaccharide, effects that were prevented by MESNA. This study is the first to demonstrate that DOX oxidizes plasma APOA1, that oxidized APOA1 enhances macrophage TNF-α release and thus could contribute to potential subsequent TNF-α-mediated toxicity, and that MESNA interacts with DOX to block this mechanism and suggests that MESNA could reduce systemic side effects of DOX.  相似文献   
24.
Medicinal plants are becoming an important research area for novel and bioactive molecules for drug discovery. Novel therapeutic strategies and agents are urgently needed to treat different incurable diseases. Many plant derived active compounds are in human clinical trials. Currently ursolic acid is in human clinical trial for treating cancer, tumor, and skin wrinkles. This review includes the clinical use of ursolic acid in various diseases including anticancer, antitumor, and antiwrinkle chemotherapies, and the isolation and purification of this tritepernoid from various plants to update current knowledge on the rapid analysis of ursolic acid by using analytical methods. In addition, the chemical modifications of ursolic acid to make more effective and water soluble derivatives, previous and current information regarding, its natural and semisynthetic analogs, focusing on its anticancer, cytotoxic, antitumor, antioxidant, anti-inflammatory, anti-HIV, acetyl cholinesterase, α-glucosidase, antimicrobial, and hepatoprotective activities, briefly discussion is attempted here for its research perspectives. This review article contains fourteen medicinally important ursolic acid derivatives and 351 references.  相似文献   
25.
Phosphorylation on tyrosine, threonine and serine residues represents one of the most important post-translational modifications and is a key regulator of cellular signaling of multiple biological processes that require a strict control by protein kinases and protein phosphatases. Abnormal protein phosphorylation has been associated with several human diseases including Alzheimer's disease (AD). One of the characteristic hallmarks of AD is the presence of neurofibrillary tangles, composed of microtubule-associated, abnormally hyperphosphorylated tau protein. However, several others proteins showed altered phosphorylation levels in AD suggesting that deregulated phosphorylation may contribute to AD pathogenesis. Phosphoproteomics has recently gained attention as a valuable approach to analyze protein phosphorylation, both in a quantitative and a qualitative way. We used the fluorescent phosphospecific Pro-Q Diamond dye to identify proteins that showed alterations in their overall phosphorylation in the hippocampus of AD vs. control (CTR) subjects. Significant changes were found for 17 proteins involved in crucial neuronal process such as energy metabolism or signal transduction. These phosphoproteome data may provide new clues to better understand molecular pathways that are deregulated in the pathogenesis and progression of AD.  相似文献   
26.
Small model peptides containing N-terminal methionine are reported to form sulfur-centered-free radicals that are stabilized by the terminal N atom. To test whether a similar chemistry would apply to a disease-relevant longer peptide, Alzheimer's disease (AD)-associated amyloid beta-peptide 1-42 was employed. Methionine at residue 35 of this 42-mer has been shown to be a key amino acid residue involved in amyloid beta-peptide 1-42 [A beta1-42]-mediated toxicity and therefore, the pathogenesis of AD. Previous studies have shown that mutation of the methionine residue to norleucine abrogates the oxidative stress and neurotoxic properties of A beta(1-42). In the current study, we examined if the position of methionine at residue 35 is a criterion for toxicity. In doing so, we tested the effects of moving methionine to the N-terminus of the peptide in a synthetic peptide, A beta(1-42)D1M, in which methionine was substituted for aspartic acid at the N-terminus of the peptide and all subsequent residues from D1 to L34 were shifted one position towards the carboxy-terminus. A beta(1-42)D1M exhibited oxidative stress and neurotoxicity properties similar to those of the native peptide, A beta(1-42), all of which are inhibited by the free radical scavenger Vitamin E, suggesting that reactive oxygen species may play a role in the A beta-mediated toxicity. Additionally, substitution of methionine at the N-terminus by norleucine, A beta(1-42)D1Nle, completely abrogated the oxidative stress and neurotoxicity associated with the A beta(1-42)D1M peptide. The results of this study validate the chemistry reported for short peptides with N-terminal methionines in a disease-relevant peptide.  相似文献   
27.
We have developed a rice (Oryza sativa) genome annotation database (Osa1) that provides structural and functional annotation for this emerging model species. Using the sequence of O. sativa subsp. japonica cv Nipponbare from the International Rice Genome Sequencing Project, pseudomolecules, or virtual contigs, of the 12 rice chromosomes were constructed. Our most recent release, version 3, represents our third build of the pseudomolecules and is composed of 98% finished sequence. Genes were identified using a series of computational methods developed for Arabidopsis (Arabidopsis thaliana) that were modified for use with the rice genome. In release 3 of our annotation, we identified 57,915 genes, of which 14,196 are related to transposable elements. Of these 43,719 non-transposable element-related genes, 18,545 (42.4%) were annotated with a putative function, 5,777 (13.2%) were annotated as encoding an expressed protein with no known function, and the remaining 19,397 (44.4%) were annotated as encoding a hypothetical protein. Multiple splice forms (5,873) were detected for 2,538 genes, resulting in a total of 61,250 gene models in the rice genome. We incorporated experimental evidence into 18,252 gene models to improve the quality of the structural annotation. A series of functional data types has been annotated for the rice genome that includes alignment with genetic markers, assignment of gene ontologies, identification of flanking sequence tags, alignment with homologs from related species, and syntenic mapping with other cereal species. All structural and functional annotation data are available through interactive search and display windows as well as through download of flat files. To integrate the data with other genome projects, the annotation data are available through a Distributed Annotation System and a Genome Browser. All data can be obtained through the project Web pages at http://rice.tigr.org.  相似文献   
28.
Data from mutant analysis in yeast and Dictyostelium indicate a role for the cyclase-associated protein (CAP) in endocytosis and vesicle transport. We have used genetic and biochemical approaches to identify novel interacting partners of Dictyostelium CAP to help explain its molecular interactions in these processes. Cyclase-associated protein associates and interacts with subunits of the highly conserved vacuolar H(+)-ATPase (V-ATPase) and co-localizes to some extent with the V-ATPase. Furthermore, CAP is essential for maintaining the structural organization, integrity and functioning of the endo-lysosomal system, as distribution and morphology of V-ATPase- and Nramp1-decorated membranes were disturbed in a CAP mutant (CAP bsr) accompanied by an increased endosomal pH. Moreover, concanamycin A (CMA), a specific inhibitor of the V-ATPase, had a more severe effect on CAP bsr than on wild-type cells, and the mutant did not show adaptation to the drug. Also, the distribution of green fluorescent protein-CAP was affected upon CMA treatment in the wildtype and recovered after adaptation. Distribution of the V-ATPase in CAP bsr was drastically altered upon hypo-osmotic shock, and growth was slower and reached lower saturation densities in the mutant under hyper-osmotic conditions. Taken together, our data unravel a link of CAP with the actin cytoskeleton and endocytosis and suggest that CAP is an essential component of the endo-lysosomal system in Dictyostelium.  相似文献   
29.
A series of novel quinazolinone linked pyrrolobenzodiazepine (PBD) conjugates were synthesized. These compounds 4af and 5af were prepared in good yields by linking C-8 of DC-81 with quinazolinone moiety through different alkane spacers. These conjugates were tested for anticancer activity against 11 human cancer cell lines and found to be very potent anticancer agents with GI50 values in the range of <0.1–26.2 μM. Among all the PBD conjugates, one of the conjugate 5c was tested against a panel of 60 human cancer cells. This compound showed activity for individual cancer cell lines with GI50 values of <0.1 μM. The thermal denaturation studies exhibited effective DNA binding ability compared to DC-81 and these results are further supported by molecular modeling studies. The detailed biological aspects of these conjugates on A375 cell line were studied. It was observed that compounds 4b and 5c induced the release of cytochrome c, activation of caspase-3, cleavage of PARP and subsequent cell death. Further, these compounds when treated with A375 cells showed the characteristic features of apoptosis like enhancement in the levels of p53, p21 and p27 inhibition of cyclin dependent kinase-2 (CDK2) and suppression of NF-κB. Moreover, these two compounds 4b and 5c control the cell proliferation by regulating anti-apoptotic genes like (B-cell lymphoma 2) Bcl-2. Therefore, the data generated suggests that these PBD conjugates activate p53 and inhibit NF-κB and thereby these compounds could be promising anticancer agents with better therapeutic potential for the suppression of tumours.  相似文献   
30.
Tricyclodecan-9-yl-xanthogenate (D609) has in vivo and in vitro antioxidant properties. D609 mimics glutathione (GSH) and has a free thiol group, which upon oxidation forms a disulfide. The resulting dixanthate is a substrate for glutathione reductase, regenerating D609. Recent studies have also shown that D609 protects brain in vivo and neuronal cultures in vitro against the potential Alzheimer's disease (AD) causative factor, Abeta(1-42)-induced oxidative stress and cytotoxicity. Mitochondria are important organelles with both pro- and antiapoptotic factor proteins. The present study was undertaken to test the hypothesis that intraperitoneal injection of D609 would provide neuroprotection against free radical-induced, mitochondria-mediated apoptosis in vitro. Brain mitochondria were isolated from gerbils 1 h post injection intraperitoneally (ip) with D609 and subsequently treated in vitro with the oxidants Fe(2+)/H(2)O(2) (hydroxyl free radicals), 2,2-azobis-(2-amidinopropane) dihydrochloride (AAPH, alkoxyl and peroxyl free radicals), and AD-relevant amyloid beta-peptide 1-42 [Abeta(1-42)]. Brain mitochondria isolated from the gerbils previously injected ip with D609 and subjected to these oxidative stress inducers, in vitro, showed significant reduction in levels of protein carbonyls, protein-bound hydroxynonenal [a lipid peroxidation product], 3-nitrotyrosine, and cytochrome c release compared to oxidant-treated brain mitochondria isolated from saline-injected gerbils. D609 treatment significantly maintains the GSH/GSSG ratio in oxidant-treated mitochondria. Increased activity of glutathione S-transferase, glutathione peroxidase, and glutathione reductase in brain isolated from D609-injected gerbils is consistent with the notion that D609 acts like GSH. These antiapoptotic findings are discussed with reference to the potential use of this brain-accessible glutathione mimetic in the treatment of oxidative stress-related neurodegenerative disorders, including AD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号