首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   6篇
  2022年   3篇
  2021年   1篇
  2020年   2篇
  2015年   4篇
  2014年   2篇
  2013年   2篇
  2012年   6篇
  2011年   2篇
  2010年   4篇
  2009年   1篇
  2008年   4篇
  2007年   3篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
  2003年   5篇
  2002年   2篇
  2001年   5篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   5篇
  1991年   1篇
  1990年   3篇
  1988年   1篇
排序方式: 共有72条查询结果,搜索用时 15 毫秒
31.
32.
33.
The acquisition of linguistic competency from more experienced social partners is a fundamental aspect of human language. However, there is little evidence that non-human primates learn to use their vocalizations from social partners. Captive chimpanzees (Pan troglodytes) produce idiosyncratic vocal signals that are used intentionally to capture the attention of a human experimenter. Interestingly, not all apes produce these sounds, and it is unclear what factors explain this difference. We tested the hypothesis that these attention-getting (AG) sounds are socially learned via transmission between mothers and their offspring. We assessed 158 chimpanzees to determine if they produced AG sounds. A significant association was found between mother and offspring sound production. This association was attributable to individuals who were raised by their biological mother-as opposed to those raised by humans in a nursery environment. These data support the hypothesis that social learning plays a role in the acquisition and use of communicative vocal signals in chimpanzees.  相似文献   
34.
35.
Inducible nitric oxide synthase (iNOS) and high levels of nitric oxide (NO) are present in the CNS of patients with Alzheimer's disease (AD), resulting in both DNA and protein oxidative damage. While iNOS can result in damaging levels of NO, the neuronal constitutive form of NOS (nNOS) has a role in cell signalling and can prevent neuronal apoptosis. iNOS can be induced by inflammatory cytokines such as tumor necrosis alpha (TNFα). TNFα is found in the CNS of AD, where neurons dependent on neurotrophins such as nerve growth factor (NGF) are particularly affected. Here we determined the effect of TNFα on the three NOS isoforms (endothelial, neuronal and inducible) in NGF‐responsive PC12 cells. We found that while TNFα and NGF alone were uneffective, their simultaneous addition resulted in iNOS induction and the release of NO. In addition TNFα and NGF synergistically reduced nNOS, independently of the presence of high NO levels promoted by iNOS, while no effect was observed on eNOS. A similar pattern was observed in the brain of aged human subjects as compared to young individuals. Our results suggest that synergistic iNOS induction by TNFα and NGF may occur in selective populations of NGF‐responsive neurons. Oxidative damage in such neurons could then occur in the presence of elevated levels of TNFα, that potentially occur in the brain of AD patients. This damaging scenario may further be aggravated by a concomitant reduction of nNOS, brought about by similar synergistic effects between TNFα and NGF. Acknowledgements: Supported by NIA (AG13945) and Sealy Res. Dev. grants to GT.  相似文献   
36.
Calcitonin gene-related peptide (CGRP) is a vasodilatory peptide, and it is primarily synthesized in dorsal root ganglia (DRG). Plasma CGRP levels increase during pregnancy and with steroid hormones, and nerve growth factor (NGF) stimulates calcitonin/CGRP promoter and CGRP synthesis in DRG. We previously showed that CGRP levels in DRG were stimulated with steroid hormone treatments in vivo but not in vitro. Thus, the stimulation of CGRP by these hormones may be indirect through the upregulation of NGF effects. We hypothesized that the female sex steroid hormones upregulate NGF receptors, trkA and p75(NTR), in DRG. We examined the effects of 17 beta-estradiol (E(2)) and progesterone (P(4)) on NGF receptors in DRG obtained from ovariectomized (ovx) rats. Groups of 4 ovx rats were injected s.c. with 5 microg E(2), 4 mg P(4), or 5 microg E(2) + 4 mg P(4) in 0.2 ml sesame oil or injected with oil only and were killed at 6, 24, and 48 h. In addition, ovx rats were also injected s.c. with varying doses (0.2, 1.0, 5.0, 25 microg) of E(2) (0.5, 1.5, 4, 10 mg) P(4), and (5 microg) E(2) + (0.5, 1.5, 4.0, 10 mg) P(4) in 0.2 ml sesame oil, or vehicle, and killed at 6 (for E(2)) or 24 (for P(4) and E(2) + P(4)) h. Furthermore, groups of ovx rats were also killed at 12 and 24 h; 3 and 7 days; 2, 4, and 6 wk after ovariectomy. The DRGs were collected from all groups and then processed for Western immunoblotting to examine both trkA and p75(NTR) levels. Estradiol increased trkA at 6 h but not p75(NTR). Progesterone caused upregulation of trkA and p75(NTR) at 6 and 24 h. 17 beta-Estradiol + P(4) increased trkA at 6 and 24 h and p75(NTR) at all time points examined. One microgram of E(2) increased trkA but did not affect p75(NTR) levels. Progesterone at 4 and 10 mg upregulated trkA but only 10 mg P(4) increased p75(NTR). Five micrograms of E(2) coinjected with P(4) at 1.5 and 4 mg increased trkA, while p75(NTR) receptor was upregulated when coinjected with P(4) at 1.5 to 10 mg. The ovariectomy caused a decrease in trkA receptors compared to proestrus rats, and these decreases were significant by 6 wk, but surprisingly p75(NTR) increased at 2 wk after ovariectomy. 17 beta-Estradiol increased trkA but not p75(NTR) receptors in DRG, whereas P(4) caused increases in both trkA and p75(NTR) in DRG. In addition, the combination of these steroid hormones had more effect on both receptors than either hormone alone. Thus, we concluded that high levels of female steroid hormones such as those due to pregnancy or hormonal replacement therapy could increase NGF receptor expression in DRG that carry more NGF to elevate the CGRP synthesis in these groups. We suggested that the regulation of NGF receptors by ovarian steroids may underlie steroidal regulation of other factors such as CGRP.  相似文献   
37.
Physiological and pathological aging of the central nervous system (CNS) is characterized by functional neuronal impairments which may lead to perturbed cell homeostasis and eventually to neuronal death. Many toxic events may underlie age-related neurodegeneration. These include the effects of beta amyloid, Tau and mutated presenilin proteins, free radicals and oxidative stress, pro-inflammatory cytokines and lack of growth factor support, which can be individually or collectively involved. Taken individually, these toxicants can induce very diverse cell responses, thus requiring individually targeted corrective interventions upstream of common cell death (apoptotic) pathways. Recent preliminary evidence suggests that the pro-inflammatory cytokine tumour necrosis factor alpha (TNFalpha) and growth factor withdrawal can both activate a common apoptotic pathway in nerve growth factor (NGF)-responsive PC12 cells involving caspase 3, albeit through very distinct upstream pathways: the former through active signalling and the latter through passive or lack of survival signalling. Here, we show that NGF can rescue PC12 cells from both growth factor withdrawal- and TNFalpha-promoted cell death. However, NGF rescue from growth factor withdrawal requires NGF signalling through the high-affinity tyrosine kinase receptor (TrkA), while NGF rescue from TNFalpha-promoted cell death requires NGF signalling through the low-affinity p75NTR receptor. These results strengthen the idea that prevention of age- or pathology-associated neurodegeneration may require varied molecular approaches reflecting the diversity of the toxicants involved, possibly acting simultaneously.  相似文献   
38.
SMARCAL1, ZRANB3 and HLTF are required for the remodeling of replication forks upon stress to promote genome stability. RAD51, along with the RAD51 paralog complex, were also found to have recombination-independent functions in fork reversal, yet the underlying mechanisms remained unclear. Using reconstituted reactions, we build upon previous data to show that SMARCAL1, ZRANB3 and HLTF have unequal biochemical capacities, explaining why they have non-redundant functions. SMARCAL1 uniquely anneals RPA-coated ssDNA, which depends on its direct interaction with RPA, but not on ATP. SMARCAL1, along with ZRANB3, but not HLTF efficiently employ ATPase driven translocase activity to rezip RPA-covered bubbled DNA, which was proposed to mimic elements of fork reversal. In contrast, ZRANB3 and HLTF but not SMARCAL1 are efficient in branch migration that occurs downstream in fork remodeling. We also show that low concentrations of RAD51 and the RAD51 paralog complex, RAD51B–RAD51C–RAD51D–XRCC2 (BCDX2), directly stimulate the motor-driven activities of SMARCAL1 and ZRANB3 but not HLTF, and the interplay is underpinned by physical interactions. Our data provide a possible mechanism explaining previous cellular experiments implicating RAD51 and BCDX2 in fork reversal.  相似文献   
39.
Animal consciousness has long been assumed to be a nonviablearena of investigation. At best, it was thought that any indicationsof such consciousness, should it exist, would not be interpretableby our species. Recent work in the field of language competencieswith bonobos has laid this conception open to serious challenge.This paper reviews this work and the case it makes for our impendingcapacity to tap the consciousness of a uniquely enculturatedgroup of bonobos who are capable of comprehending human speechand employing a lexical communication system.  相似文献   
40.
Alzheimer's disease (AD) is a progressive, neurodegenerative disorder and the most prevalent senile dementia. The early symptom of memory dysfunction involves synaptic loss, thought to be mediated by soluble amyloid-beta (Aβ) oligomers. These aggregate species target excitatory synapses and their levels correlate with disease severity. Studies in cell culture and rodents have shown that oligomers increase intracellular calcium (Ca(2+)), impairing synaptic plasticity. Yet, the molecular mechanism mediating Aβ oligomers' toxicity in the aged brain remains unclear. Here, we apply quantitative immunofluorescence in human brain tissue from clinically diagnosed mild cognitive impaired (MCI) and AD patients to investigate the distribution of phosphorylated (active) Ca(2+) /calmodulin-dependent protein kinase-α (p(Thr286)CaMKII), a critical enzyme for activity-dependent synaptic remodeling associated with cognitive function. We show that p(Thr286)CaMKII immunoreactivity is redistributed from dendritic arborizations to neural perikarya of both MCI and AD hippocampi. This finding correlates with cognitive assessment scores, suggesting that it may be a molecular read-out of the functional deficits in early AD. Treatment with oligomeric Aβ replicated the observed phenotype in mice and resulted in a loss of p(Thr286)CaMKII from synaptic spines of primary hippocampal neurons. Both outcomes were prevented by inhibiting the phosphatase calcineurin (CaN). Collectively, our results support a model in which the synaptotoxicity of Aβ oligomers in human brain involves the CaN-dependent subcellular redistribution of p(Thr286)CaMKII. Therapies designed to normalize the homeostatic imbalance of neuronal phosphatases and downstream dephosphorylation of synaptic p(Thr286)CaMKII should be considered to prevent and treat early AD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号