首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   6篇
  2022年   3篇
  2021年   1篇
  2020年   2篇
  2015年   4篇
  2014年   2篇
  2013年   2篇
  2012年   6篇
  2011年   2篇
  2010年   4篇
  2009年   1篇
  2008年   4篇
  2007年   3篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
  2003年   5篇
  2002年   2篇
  2001年   5篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   5篇
  1991年   1篇
  1990年   3篇
  1988年   1篇
排序方式: 共有72条查询结果,搜索用时 31 毫秒
21.
The exceptional versatility of calmodulin (CaM) three-dimensional arrangement is reflected in the growing number of structural models of CaM/protein complexes currently available in the Protein Data Bank (PDB) database, revealing a great diversity of conformations, domain organization, and structural responses to Ca2 +. Understanding CaM binding is complicated by the diversity of target proteins sequences. Data mining of the structures shows that one face of each of the eight CaM helices can contribute to binding, with little overall difference between the Ca2 + loaded N- and C-lobes and a clear prevalence of the C-lobe low Ca2 + conditions. The structures reveal a remarkable variety of configurations where CaM binds its targets in a preferred orientation that can be reversed and where CaM rotates upon Ca2 + binding, suggesting a highly dynamic metastable relation between CaM and its targets. Recent advances in structure–function studies and the discovery of CaM mutations being responsible for human diseases, besides expanding the role of CaM in human pathophysiology, are opening new exciting avenues for the understanding of the how CaM decodes Ca2 +-dependent and Ca2 +-independent signals.  相似文献   
22.
Large conductance, calcium-activated potassium channels [big potassium (BK) channel] consist of a tetramer of pore-forming α-subunit and distinct accessory β-subunits (β1–4) that modify the channel’s properties. In this study, we analyzed the effects of BK channel activators and blockers on glutamate and γ-aminobutyric acid (GABA) release from synaptosomes isolated from the cerebral cortices or trigeminal caudal nuclei (TCN) of rats. Real-time polymerase chain reaction was used to characterize BK channel α and β(1–4) subunit expression in the cortex and in the trigeminal ganglia (TG), whose neurons project primary terminal afferents into the TCN. Immunocytochemistry was used to localize these subunits on cortical and TCN synaptosomes. The BK channels regulating [3H]D-aspartate release from primary afferent nerve terminals projecting into the TCN displayed limited sensitivity to iberiotoxin, whereas those expressed on cortical synaptosomes were highly sensitive to this toxin. BK channels did not appear to be present on GABAergic nerve terminals from the TCN since [3H]-γ-aminobutyric acid release in this model was unaffected by BK channel activators or blockers. Gene expression studies revealed expression levels of the α subunit in the TG that were only 31.2 ± 2.1 % of those found in cortical tissues. The β4 subunit was the accessory subunit expressed most abundantly in both the cortex and TG. Levels of β1 and β2 were low in both these areas although β2 expression in the TG was higher than that found in the cortex. Immunocytochemistry experiments showed that co-localization of α and β4 subunits (the accessory subunit most abundantly expressed in both brain areas) was more common in TCN synaptosomes than in cortical synaptosomes. On the basis of these findings, it is reasonable to hypothesize that BK channels expressed on glutamatergic terminals in the TCN and cortex have distinct pharmacological profiles, which probably reflect different α and β subunit combinations. Channels in the cortex seem to be composed mainly of α subunits and to a lesser degree by α and β4 subunits, whereas in the TG the α + β4 combination seems to prevail (although α and/or α + β2 channels cannot be excluded). In light of the BK channels’ selective control of excitatory transmission and their pharmacological diversity, their effects on primary glutamatergic afferents projecting to TCN represent a potential target for drug therapy of migraines and other types of orofacial pain.  相似文献   
23.
24.
Clinical treatment-failures to affordable drugs encouraged new investigation for discovery and development of new prophylactic and therapeutic interventions against malaria. The Drug Discovery Cluster (DDcl) of the Italian Malaria Network gathers several highly integrated and complementary laboratories from different Italian Institutions to identify, synthesise, screen in vitro and in vivo new antimalarial molecules directed against the intraerythrocytic stage of P. falciparum parasites and/or with transmission blocking activity to select lead compounds for further development. Complementary research activities, both in vitro and in the clinics, aim at investigating the pathogenetic mechanisms of severe malaria anaemia and the different manifestations of the disease in malaria-HIV co-infected patients to identify new therapies and improve survival.  相似文献   
25.
The K(+) channels encoded by the human Ether-a-gogo Related Gene-1 (hERG1) are crucially involved in controlling heart and brain excitability and are selectively influenced by reactive oxygen species (ROS). To localize the molecular regions involved in ROS-induced modulation of hERG1, segmental exchanges between the ROS-sensitive hERG1 and the ROS-insensitive bovine ether-a-gogo gene (bEAG) K(+) channels were generated, and the sensitivity of these chimeric channels to ROS was studied with the two-microelectrode voltage-clamp technique upon their expression in Xenopus oocytes. Substitution of the S(5)-S(6) linker of hERG1 with the corresponding bEAG region removed channel sensitivity to ROS, whereas the reverse chimeric exchange introduced ROS sensitivity into bEAG. Mutation of each of the two hERG1 histidines at positions 578 and 587 within the S(5)-S(6) linker generated K(+) channels insensitive to modulation by ROS. In addition, the two iron chelators desferrioxamine (1 mm) and o-phenanthroline (0.2 mm) significantly inhibited hERG1 outward K(+) currents and prevented hERG1 inhibition induced by the ROS-scavenging enzyme catalase (1000 units/ml). Finally, the hERG1-inhibitory effect exerted by the iron chelators was prevented by the hERG1 H578D/H587Y double mutation. Collectively, the results obtained suggest that histidines at positions 578 and 587 in the S(5)-S(6) linker region of hERG1 K(+) channels are crucial players in ROS-induced modulation of hERG1 K(+) channels.  相似文献   
26.
The physiological response of two central nervous system neurotransmitter receptors to oxidative stress was studied using the rat model of hyperoxia. We show that hyperoxia leads to a decline in the ability of isoproterenol (ISO) to augment GABAergic responses in cerebellar Purkinje neurons in vivo. This effect is reversed by the N-tert-butylalpha-phenylnitrone (PBN). We also show that hyperoxia produces a decline in the ability of oxotremorine (OXO) to stimulate dopamine (DA) release in striatal slices. This effect is accompanied by an increase in hydroxyl radical levels in the CNS reflected in an increase in 2,3-DHBA, suggesting that the change is the result of an increased level of oxidative stress. We also show a time dependent effect of hyperoxia on both beta-adrenergic and muscarinic receptor function. We examined the interaction between age and hyperoxia exposure and found that in 12-month-old rats there is a decline in the baseline response prior to oxygen exposure that may interfere with observing a subsequent effect of hyperoxia. Differential effects were observed between the cerebellum and striatum with respect to the interaction of age and time of oxygen exposure. Overall, the data suggest that age and hyperoxia may be acting via a common mechanism because there was no synergistic effect of the two conditions.  相似文献   
27.
Critical loci for ion conduction in inward rectifier K+ channels are only now being discovered. The C-terminal region of IRK1 plays a crucial role in Mg2+i blockade and single-channel K+ conductance. A negatively charged aspartate in the putative second transmembrane domain (position 172) is essential for time-dependent block by the cytoplasmic polyamines spermine and spermidine. We have now localized the C-terminus effect in IRK1 to a single, negatively charged residue (E224). Mutation of E224 to G, Q and S drastically reduced rectification. Furthermore, the IRK1 E224G mutation decreased block by Mg2+i and spermidine and, like the E224Q mutation, caused a dramatic reduction in the apparent single-channel K+ conductance. The double mutation IRK1 D172N+ E224G was markedly insensitive to spermidine block, displaying an affinity similar to ROMK1. The results are compatible with a model in which the negatively charged residue at position 224, E224, is a major determinant of pore properties in IRK1. By means of a specific interaction with the negatively charged residue at position 172, D172, E224 contributes to the formation of the binding pocket for Mg2+ and polyamines, a characteristic of strong inward rectifiers.  相似文献   
28.
Individual variability in delay of gratification (DG) is associated with a number of important outcomes in both non-human and human primates. Using diffusion tensor imaging (DTI), this study describes the relationship between probabilistic estimates of white matter tracts projecting from the caudate to the prefrontal cortex (PFC) and DG abilities in a sample of 49 captive chimpanzees (Pan troglodytes). After accounting for time between collection of DTI scans and DG measurement, age and sex, higher white matter connectivity between the caudate and right dorsal PFC was found to be significantly associated with the acquisition (i.e. training phase) but not the maintenance of DG abilities. No other associations were found to be significant. The integrity of white matter connectivity between regions of the striatum and the PFC appear to be associated with inhibitory control in chimpanzees, with perturbations on this circuit potentially leading to a variety of maladaptive outcomes. Additionally, results have potential translational implications for understanding the pathophysiology of a number of psychiatric and clinical outcomes in humans.  相似文献   
29.
Prion diseases are fatal neurodegenerative disorders characterized by a long pre-symptomatic phase followed by rapid and progressive clinical phase. Although rare in humans, the unconventional infectious nature of the disease raises the potential for an epidemic. Unfortunately, no treatment is currently available. The hallmark event in prion diseases is the accumulation of a misfolded and infectious form of the prion protein (PrP(Sc)). Previous reports have shown that PrP(Sc) induces endoplasmic reticulum stress and changes in calcium homeostasis in the brain of affected individuals. In this study we show that the calcium-dependent phosphatase Calcineurin (CaN) is hyperactivated both in vitro and in vivo as a result of PrP(Sc) formation. CaN activation mediates prion-induced neurodegeneration, suggesting that inhibition of this phosphatase could be a target for therapy. To test this hypothesis, prion infected wild type mice were treated intra-peritoneally with the CaN inhibitor FK506 at the clinical phase of the disease. Treated animals exhibited reduced severity of the clinical abnormalities and increased survival time compared to vehicle treated controls. Treatment also led to a significant increase in the brain levels of the CaN downstream targets pCREB and pBAD, which paralleled the decrease of CaN activity. Importantly, we observed a lower degree of neurodegeneration in animals treated with the drug as revealed by a higher number of neurons and a lower quantity of degenerating nerve cells. These changes were not dependent on PrP(Sc) formation, since the protein accumulated in the brain to the same levels as in the untreated mice. Our findings contribute to an understanding of the mechanism of neurodegeneration in prion diseases and more importantly may provide a novel strategy for therapy that is beneficial at the clinical phase of the disease.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号