首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   6篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1996年   3篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
排序方式: 共有49条查询结果,搜索用时 375 毫秒
11.
12.
Migration of the gap junction protein connexin 43 (Cx43) in SDS-PAGE yields 2 to 4 distinct bands, detectable in the 40-47 kDa range. Here, we show that antibodies against the carboxy-terminal domain of Cx43 recognized an additional 20-kDa product. This protein was detected in some culture cell lysates. The presence of the 20-kDa band was not prevented by the use of protease inhibitors (Complete(R) and phenylmethylsulfonyl fluoride (PMSF), 1-5 mM). The band was absent from cells treated with Cx43-specific RNAi, and from those derived from Cx43-deficient mice, indicating that this Cx43-immunoreactive protein is a product of the Cx43 gene. Treatment of CHO cells with cyclosporin A caused a reduction in the amount of full-length Cx43 and a concomitant increase in the amount of the 20-kDa band. Overall, our data show that a fraction of the Cx43-immunoreactive protein pool within a given cell may correspond to a C-terminal fragment of the protein.  相似文献   
13.
Synapse-associated protein-97 (SAP97) is a membrane-associated guanylate kinase scaffolding protein expressed in cardiomyocytes. SAP97 has been shown to associate and modulate voltage-gated potassium (Kv) channel function. In contrast to Kv channels, little information is available on interactions involving SAP97 and inward rectifier potassium (Kir2.x) channels that underlie the classical inward rectifier current, IK1. To investigate the functional effects of silencing SAP97 on IK1 in adult rat ventricular myocytes, SAP97 was silenced using an adenoviral short hairpin RNA vector. Western blot analysis showed that SAP97 was silenced by ∼85% on day 3 post-infection. Immunostaining showed that Kir2.1 and Kir2.2 co-localize with SAP97. Co-immunoprecipitation (co-IP) results demonstrated that Kir2.x channels associate with SAP97. Voltage clamp experiments showed that silencing SAP97 reduced IK1 whole cell density by ∼55%. IK1 density at −100 mV was −1.45 ± 0.15 pA/picofarads (n = 6) in SAP97-silenced cells as compared with −3.03 ± 0.37 pA/picofarads (n = 5) in control cells. Unitary conductance properties of IK1 were unaffected by SAP97 silencing. The major mechanism for the reduction of IK1 density appears to be a decrease in Kir2.x channel abundance. Furthermore, SAP97 silencing impaired IK1 regulation by β1-adrenergic receptor (β1-AR) stimulation. In control, isoproterenol reduced IK1 amplitude by ∼75%, an effect that was blunted following SAP97 silencing. Our co-IP data show that β1-AR associates with SAP97 and Kir2.1 and also that Kir2.1 co-IPs with protein kinase A and β1-AR. SAP97 immunolocalizes with protein kinase A and β1-AR in the cardiac myocytes. Our results suggest that in cardiac myocytes SAP97 regulates surface expression of channels underlying IK1, as well as assembles a signaling complex involved in β1-AR regulation of IK1.  相似文献   
14.
Determination of the protein-protein interactions of connexins has become a rapidly expanding field of research. While there are multiple methods of determining the identity of binding partners, determination of the strengths of interactions is not as simple. Here we describe the use of the in vitro method Enzyme Linked Sorbent Assay (ELSA) to compare binding affinities of known protein partners for Connexin43. We used the binding of Cx43 Carboxyl Terminal domain to the PDZ-2 domain of Zonula Occludens-1 and to the SH3 domain of c-Src. In the ELSA assay we found that while the binding of the SH3 domain of c-Src is pH-dependent, the interaction of the PDZ domain of ZO-1 is not. These data confirm findings using Surface Plasmon Resonance (1) and indicate that ELSA can be a useful tool in determining the kinetics of protein-protein interactions.  相似文献   
15.
With the growth of genetic engineering, mice have become common as models of human diseases, which in turn has stimulated the development of techniques to monitor and image the murine cardiovascular system. Invasive methods are often more quantitative, but noninvasive methods are preferred when measurements must be repeated serially on living animals during development or in response to pharmacological or surgical interventions. Because of the small size and high heart rates in mice, high spatial and temporal resolutions are required to preserve signal fidelity. Monitoring of body temperature and the electrocardiogram is essential when animals must be anesthetized for a measurement or other procedure. Several other groups have developed cardiovascular imaging modalities suitable for murine applications, and ultrasound is the most widely used. Our group has developed and applied high-resolution Doppler probes and signal processing for measuring blood velocity in the heart and peripheral vessels of anesthetized mice noninvasively. We can measure cardiac filling and ejection velocities as indices of systolic and diastolic ventricular function and for timing of cardiac events; velocity pulse arrival times for determining pulse-wave velocity and arterial stiffness; peripheral velocity waveforms as indices of arterial resistance, compliance, and wave reflections; stenotic velocities for estimation of pressure drop and detection of vorticity; and tail artery velocity for determining systolic and diastolic blood pressure using a pressure cuff. These noninvasive methods are convenient and easy to apply and have been used to detect and evaluate numerous cardiovascular phenotypes in mutant mice.  相似文献   
16.
Mouse resident peritoneal macrophages stimulated in vitro by purified bacterial lipopolysaccharide (LPS) produced both prostaglandin E2 (PGE2) and prostaglandin I2 (PGI2), the latter detected as its stable metabolite, 6-keto PGF1 alpha. Maximum production, induced in each case by 1 ng/ml purified LPS, was in the range of 10(-7)M for PGI2 and 3 x 10(-8)M for PGE2. A quantitatively similar increase in intracellular levels of macrophage cyclic AMP (measured on a whole cell basis), with a similar duration of effect, was stimulated by PGE2 and PGI2; however, only PGE2 had a negative regulatory effect on macrophage activation for tumor cell killing. These data confirm that more than a whole cell increase in the concentration of cyclic AMP is needed to shut off nonspecific tumor cell killing mediated by LPS-activated resident peritoneal macrophages.  相似文献   
17.
18.
Members of the CELF family of RNA binding proteins have been implicated in alternative splicing regulation in developing heart. Transgenic mice that express a nuclear dominant-negative CELF protein specifically in the heart (MHC-CELFDelta) develop cardiac hypertrophy and dilated cardiomyopathy with defects in alternative splicing beginning as early as 3 weeks after birth. MHC-CELFDelta mice exhibit extensive cardiac fibrosis, severe cardiac dysfunction, and premature death. Interestingly, the penetrance of the phenotype is greater in females than in males despite similar levels of dominant-negative expression, suggesting that there is sex-specific modulation of splicing activity. The cardiac defects in MHC-CELFdelta mice are directly attributable to reduced levels of CELF activity, as crossing these mice with mice overexpressing CUG-BP1, a wild-type CELF protein, rescues defects in alternative splicing, the severity and incidence of cardiac hypertrophy, and survival. We conclude that CELF protein activity is required for normal alternative splicing in the heart in vivo and that normal CELF-mediated alternative splicing regulation is in turn required for normal cardiac function.  相似文献   
19.
With the growth of genetic engineering, mice have become increasingly common as models of human diseases, and this has stimulated the development of techniques to assess the murine cardiovascular system. Our group has developed nonimaging and dedicated Doppler techniques for measuring blood velocity in the large and small peripheral arteries of anesthetized mice. We translated technology originally designed for human vessels for use in smaller mouse vessels at higher heart rates by using higher ultrasonic frequencies, smaller transducers, and higher-speed signal processing. With these methods one can measure cardiac filling and ejection velocities, velocity pulse arrival times for determining pulse wave velocity, peripheral blood velocity and vessel wall motion waveforms, jet velocities for the calculation of the pressure drop across stenoses, and left main coronary velocity for the estimation of coronary flow reserve. These noninvasive methods are convenient and easy to apply, but care must be taken in interpreting measurements due to Doppler sample volume size and angle of incidence. Doppler methods have been used to characterize and evaluate numerous cardiovascular phenotypes in mice and have been particularly useful in evaluating the cardiac and vascular remodeling that occur following transverse aortic constriction. Although duplex ultrasonic echo-Doppler instruments are being applied to mice, dedicated Doppler systems are more suitable for some applications. The magnitudes and waveforms of blood velocities from both cardiac and peripheral sites are similar in mice and humans, such that much of what is learned using Doppler technology in mice may be translated back to humans.  相似文献   
20.
In order to study the role of nitric oxide (NO) in ischemic brain injury. Global cerebral ischemia was established in SD rats by modified Pulsinelli's method. The activities of constitutive nitric oxide synthase (cNOS), inducible NOS (iNOS), neuronal NOS (nNOS), nitrite (NO2) and cyclic GMP in cerebral cortex, hippocampus, striatum and cerebellum at different time intervals were measured by radioimmunoassy, NADPH-d histochemistry and fluorometry methods. The results showed that the activities of cNOS increased at 5 min in four regions and decreased in cortex, hippocampus and striatum at 60 min, in cerebellum at 15 min iNOS increased in cortex and striatum at 15 min, in hippocampus and cerebellum at 10 min, and persisted to 60 min. The expression of nNOS increased after 5 min ischemia in cortex, striatum and hippocampus, and return to normal at 30–60 min. The NO2 and cGMP also increased after 5–15 min ischemia and returned to normal after 30–60 min ischemia. These results indicated that the NO participated in the pathogenesis of cerebral ischemia injury and different types of NOS play different role in the cerebral ischemia injuries. Selected specific NOS inhibitors to decreased the excessive production of NO at early stage may help to decrease the ischemic injury.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号