全文获取类型
收费全文 | 15479篇 |
免费 | 1447篇 |
国内免费 | 1720篇 |
专业分类
18646篇 |
出版年
2024年 | 48篇 |
2023年 | 210篇 |
2022年 | 468篇 |
2021年 | 677篇 |
2020年 | 522篇 |
2019年 | 697篇 |
2018年 | 681篇 |
2017年 | 495篇 |
2016年 | 686篇 |
2015年 | 1018篇 |
2014年 | 1230篇 |
2013年 | 1210篇 |
2012年 | 1524篇 |
2011年 | 1430篇 |
2010年 | 893篇 |
2009年 | 789篇 |
2008年 | 993篇 |
2007年 | 906篇 |
2006年 | 736篇 |
2005年 | 659篇 |
2004年 | 547篇 |
2003年 | 490篇 |
2002年 | 472篇 |
2001年 | 221篇 |
2000年 | 189篇 |
1999年 | 184篇 |
1998年 | 131篇 |
1997年 | 95篇 |
1996年 | 60篇 |
1995年 | 52篇 |
1994年 | 54篇 |
1993年 | 32篇 |
1992年 | 43篇 |
1991年 | 31篇 |
1990年 | 32篇 |
1989年 | 21篇 |
1988年 | 16篇 |
1987年 | 12篇 |
1986年 | 14篇 |
1985年 | 11篇 |
1984年 | 8篇 |
1983年 | 7篇 |
1982年 | 5篇 |
1979年 | 4篇 |
1975年 | 5篇 |
1974年 | 3篇 |
1970年 | 3篇 |
1966年 | 3篇 |
1965年 | 3篇 |
1964年 | 3篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
12.
Yang CS Lee JS Rodgers M Min CK Lee JY Kim HJ Lee KH Kim CJ Oh B Zandi E Yue Z Kramnik I Liang C Jung JU 《Cell host & microbe》2012,11(3):264-276
Phagocytosis and autophagy are two important and related arms of the host's first-line defense against microbial invasion. Rubicon is a RUN domain containing cysteine-rich protein that functions as part of a Beclin-1-Vps34-containing autophagy complex. We report that Rubicon is also an essential, positive regulator of the NADPH oxidase complex. Upon microbial infection or Toll-like-receptor 2 (TLR2) activation, Rubicon interacts with the p22phox subunit of the NADPH oxidase complex, facilitating its phagosomal trafficking to induce a burst of reactive oxygen species (ROS) and inflammatory cytokines. Consequently, ectopic expression or depletion of Rubicon profoundly affected ROS, inflammatory cytokine production, and subsequent antimicrobial activity. Rubicon's actions in autophagy and in the NADPH oxidase complex are functionally and genetically separable, indicating that Rubicon functions in two ancient innate immune machineries, autophagy and phagocytosis, depending on the environmental stimulus. Rubicon may thus be pivotal to generating an optimal intracellular immune response against microbial infection. 相似文献
13.
Hye Min Kim Min Jin Lee Ji Young Jung Chung Yeon Hwang Mincheol Kim Hee-Myong Ro Jongsik Chun Yoo Kyung Lee 《Journal of microbiology (Seoul, Korea)》2016,54(11):713-723
The increasing temperature in Arctic tundra deepens the active layer, which is the upper layer of permafrost soil that experiences repeated thawing and freezing. The increasing of soil temperature and the deepening of active layer seem to affect soil microbial communities. Therefore, information on soil microbial communities at various soil depths is essential to understand their potential responses to climate change in the active layer soil. We investigated the community structure of soil bacteria in the active layer from moist acidic tundra in Council, Alaska. We also interpreted their relationship with some relevant soil physicochemical characteristics along soil depth with a fine scale (5 cm depth interval). The bacterial community structure was found to change along soil depth. The relative abundances of Acidobacteria, Gammaproteobacteria, Planctomycetes, and candidate phylum WPS-2 rapidly decreased with soil depth, while those of Bacteroidetes, Chloroflexi, Gemmatimonadetes, and candidate AD3 rapidly increased. A structural shift was also found in the soil bacterial communities around 20 cm depth, where two organic (upper Oi and lower Oa) horizons are subdivided. The quality and the decomposition degree of organic matter might have influenced the bacterial community structure. Besides the organic matter quality, the vertical distribution of bacterial communities was also found to be related to soil pH and total phosphorus content. This study showed the vertical change of bacterial community in the active layer with a fine scale resolution and the possible influence of the quality of soil organic matter on shaping bacterial community structure. 相似文献
14.
Li Guo Ziya Huang Xingyu Chen Min Yang Miaomiao Yang Ziwei Liu Xuejie Han Xiangjie Ma Xiaoli Wang Qiguo Gao 《植物学报(英文版)》2023,65(10):2395-2406
Pollen hydration on dry stigmas is strictly regulated by pollen–stigma interactions in Brassicaceae. Although several related molecular events have been described, the molecular mechanism underlying pollen hydration remains elusive. Multiple B-class pollen coat proteins(PCP-Bs) are involved in pollen hydration. Here, by analyzing the interactions of two PCP-Bs with three Arabidopsis thaliana stigmas strongly expressing S-domain receptor kinase(SD-RLK), we determined that SD-RLK28 directly intera... 相似文献
15.
First-principles, all-electron, ab initio calculations have been performed to construct an equivalent potential of water for the electronic structure of glycine (Gly) in solution. The calculation involved three steps. The first step was to search for the minimum-energy geometric structure of the Gly + nH2O system. The second step was to calculate the electronic structure of Gly with the potential of water molecules via the self-consistent cluster-embedding method (SCCE), based on the result obtained in the first step. The last step was to calculate the electronic structure of Gly with the potential of dipoles after replacing the water molecules with dipoles. The results show that the occupied molecular orbitals of Gly are raised by about 0.0524 Ry on average due to the effect of water. The effect of water can be simulated well using the dipole potential. The equivalent potential obtained can be applied directly to electronic structure calculations of proteins in solution using the SCCE method. 相似文献
16.
A Durable Alternative for Proton‐Exchange Membranes: Sulfonated Poly(Benzoxazole Thioether Sulfone)s
Dan Zhao Jinhuan Li Min‐Kyu Song Baolian Yi Huamin Zhang Meilin Liu 《Liver Transplantation》2011,1(2):203-211
To develop a durable proton‐exchange membrane (PEM) for fuel‐cell applications, a series of sulfonated poly(benzoxazole thioether sulfone)s ( SPTESBOs) are designed and synthesized, with anticipated good dimensional stability (via acid–base cross linking), improved oxidative stability against free radicals (via incorporation of thioether groups), and enhanced inherent stability (via elimination of unstable end groups) of the backbone. The structures and the degree of sulfonation of the copolymers are characterized using Fourier‐transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy (1H NMR and 19F NMR). The electrochemical stabilities of the monomers are examined using cyclic voltammetry in a typical three‐electrode cell configuration. The physicochemical properties of the membranes vital to fuel‐cell performance are also carefully evaluated under conditions relevant to fuel‐cell operation, including chemical and thermal stability, proton conductivity, solubility in different solvents, water uptake, and swelling ratio. The new membranes exhibit low dimensional change at 25°C to 90°C and excellent thermal stability up to 250°C. Upon elimination of unstable end groups, the co‐polymers display enhanced chemical resistance and oxidative stability in Fenton's test. Further, the SPTESBO‐HFB‐60 (HFB‐60=hexafluorobenzene, 60 mol% sulfone) membrane displays comparable fuel‐cell performance to that of an NRE 212 membrane at 80°C under fully humidified condition, suggesting that the new membranes have the potential to be more durable but less expensive for fuel‐cell applications. 相似文献
17.
Signaling involved in pituitary adenylate cyclase-activating polypeptide-stimulated ADNP expression 总被引:1,自引:0,他引:1
Activity-dependent neurotrophic protein (ADNP) was discovered as a novel response gene for VIP and has neuroprotective potential. When the VIP paralog, PACAP38 was added to mouse neuron-glia co-cultures, it induced ADNP mRNA expression in a bimodal fashion at subpico- and nanomolar concentrations with greater response at subpicomolar level. The response was attenuated by a PAC1-R antagonist at both concentrations and by a VPAC1-R antagonist at nanomolar concentration only. An IP3/PLC inhibitor attenuated the response at both concentrations of PACAP38, but a MAPK inhibitor had no effect. A PKA inhibitor suppressed the response at nanomolar concentration only. These findings suggest that ADNP expression is mediated through multiple receptors and signaling pathways that are regulated by different concentrations of PACAP. 相似文献
18.
He M Horuk R Moochhala SM Bhatia M 《American journal of physiology. Gastrointestinal and liver physiology》2007,292(4):G1173-G1180
Sepsis is a complex clinical syndrome resulting from a harmful host inflammatory response to infection. Chemokines and their receptors play a key role in the pathogenesis of sepsis. BX471 is a potent nonpeptide CC chemokine receptor-1 (CCR1) antagonist in both human and mouse. The aim of the present study was to evaluate the effect of prophylactic and therapeutic treatment with BX471 on cecal ligation and puncture-induced sepsis in the mouse and to investigate the underlying mechanisms. In sepsis induced by cecal ligation and puncture, treatment with BX471 significantly protected mice against lung and liver injury by attenuating MPO activity, an indicator of neutrophil recruitment in lungs and livers and attenuating lung and liver morphological changes in histological sections. Blocking CCR1 by BX471 also downregulated ICAM-1, P-selectin, and E-selectin expression at mRNA and protein levels in lungs and livers compared with placebo-treated groups. These findings suggest that blockage of CCR1 by specific antagonist may represent a promising strategy to prevent disease progression in sepsis. 相似文献
19.
Cave A Grieve D Johar S Zhang M Shah AM 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2005,360(1464):2327-2334
Chronic heart failure, secondary to left ventricular hypertrophy or myocardial infarction, is a condition with increasing morbidity and mortality. Although the mechanisms underlying the development and progression of this condition remain a subject of intense interest, there is now growing evidence that redox-sensitive pathways play an important role. This article focuses on the involvement of reactive oxygen species derived from a family of superoxide-generating enzymes, termed NADPH oxidases (NOXs), in the pathophysiology of ventricular hypertrophy, the accompanying interstitial fibrosis and subsequent heart failure. In particular, the apparent ability of the different NADPH oxidase isoforms to define the response of a cell to a range of physiological and pathophysiological stimuli is reviewed. If confirmed, these data would suggest that independently targeting different members of the NOX family may hold the potential for therapeutic intervention in the treatment of cardiac disease. 相似文献
20.
Bark beetles are among the most destructive of pine forest pests and they form close symbiotic relationships with ophiostomatoid fungi. Although some fungi are considered to be mutualistic symbionts of bark beetles with respect to the supply of nutrients, detrimental effects of fungal symbionts on larval growth have also been frequently reported. The mechanisms of such antagonistic effects are hypothesized to be a decrease in nutritional resources caused by competition for saccharides by the fungi. Here, we provide experimental evidence that three beetle-associated fungi modify the nutritional content of an artificial phloem diet, leading to a detrimental effect on the growth of Dendroctonus valens larvae. When larvae were fed a diet of pine phloem in agar medium colonized with any of these fungi, feeding activity was not affected but weight significantly decreased. Additional analysis showed that fungi depleted the fructose and glucose concentrations in the phloem media. Furthermore, these detrimental effects were neutralized by supplementing the media with fructose or glucose, suggesting that fungi may affect larval growth by modifying diet saccharide contents. These data indicate that fungus-induced nutritional changes in bark beetle diet can affect larval growth, and that the mechanism involves fungus-induced saccharide depletion from the larval diet. 相似文献