首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2545篇
  免费   120篇
  2665篇
  2024年   5篇
  2023年   11篇
  2022年   43篇
  2021年   53篇
  2020年   33篇
  2019年   57篇
  2018年   63篇
  2017年   51篇
  2016年   102篇
  2015年   151篇
  2014年   148篇
  2013年   188篇
  2012年   251篇
  2011年   229篇
  2010年   157篇
  2009年   132篇
  2008年   189篇
  2007年   177篇
  2006年   107篇
  2005年   112篇
  2004年   94篇
  2003年   84篇
  2002年   54篇
  2001年   31篇
  2000年   31篇
  1999年   30篇
  1998年   11篇
  1997年   6篇
  1996年   3篇
  1995年   7篇
  1994年   5篇
  1993年   8篇
  1992年   9篇
  1991年   4篇
  1989年   5篇
  1988年   1篇
  1986年   3篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
  1967年   3篇
  1965年   1篇
排序方式: 共有2665条查询结果,搜索用时 15 毫秒
21.
Anaerobic fermentation for hydrogen (H2) production was studied in a two-stage fermentation system fed with different ripened fruit feedstocks (apple, pear, and grape). Among the feedstocks, ripened apple was the most efficient substrate for cumulative H2 production (4463.7 mL-H2 L−1-culture) with a maximum H2 yield (2.2 mol H2 mol−1 glucose) in the first stage at a hydraulic retention time (HRT) of 18 h. The additional cumulative biohydrogen (3337.4 mL-H2 L−1-culture) was produced in the second stage with the reused residual substrate from the first stage. The major byproducts in this study were butyrate, acetate, and ethanol, and butyrate was dominant among them in all test runs. During the two-stage system, the energy efficiency (H2 conversion) obtained from mixed ripened fruits (RF) increased from 4.6% (in the first stage) to 15.5% (in the second stage), which indicated the energy efficiency can be improved by combined hydrogen production process. The RF could be used as substrates for biohydrogen fermentation in a two-stage (dark/dark) fermentation system.  相似文献   
22.
23.
We investigated the role of B-crystallin expression in the development of thermotolerance in murine L929 cells. An initial heat-shock of 10 min at 45°C induced thermotolerance in these cells to a heat challenge at 45°C administered 24 h later. The thermotolerance ratio at 10–1 isosurvival was 1.7. Expression of B-crystallin gene was not detected during the 24 h incubation at 37°C following heat shock by either northern or western blots. In contrast, inducible HSP70 synthesis was observed during this time period. Thus, this cell line provided an unique system in which to examine the effects of transfected B-crystallin on thermoresistance and thermotolerance. Cells stably transfected with B-crystallin under the control of an inducible promoter did not show a significant increase in the ability to develop thermotolerance. However, a stably transfected L929 clone expressing high levels of constitutive B-crystallin exhibited an approximately 50% increase in thermal resistance over parental and control cells. Though expression of B-crystallin is not requisite for the development of thermotolerance in L929 cells, overexpression of transfected B-crystallin can contribute to increased thermoresistance.  相似文献   
24.
25.
26.
The antler is the most rapidly growing tissue in the animal kingdom. According to previous reports, antler glycosaminoglycans (GAGs) consist of all kinds GAGs except for heparan sulfate (HS). Chondroitin sulfate is the major antler GAG component comprising 88% of the total uronic acid content. In the current study, we have isolated HS from antler for the first time and characterized it based on both NMR spectroscopy and disaccharide composition analysis. Antler GAGs were isolated by protease treatment and followed by cetylpyridinium chloride precipitation. The sensitivity of antler GAGs to heparin lyase III showed that this sample contained heparan sulfate. After incubation of antler GAGs with chondroitin lyase ABC, the HS-containing fraction was recovered by ethanol precipitation. The composition of HS disaccharides in this fraction was determined by its complete depolymerization with a mixture of heparin lyase I, II, and III and analysis of the resulting disaccharides by the reversed-phase (RP) ion pairing-HPLC, monitored by the fluorescence detection using 2-cyanoacetamide as a post-column labeling reagent. Eight unsaturated disaccharides (DeltaUA-GlcNAc, DeltaUA-GlcNS, DeltaUA-GlcNAc6S, DeltaUA2S-GlcNAc, DeltaUA-GlcNS6S, DeltaUA2S-GlcNS, DeltaUA2S-GlcNAc6S, DeltaUA2S-GlcNS6S) were produced from antler HS by digestion with the mixture of heparin lyases. The total content of 2-O-sulfo disaccharide units in antler HS was higher than that of heparan sulfate from most other animal sources.  相似文献   
27.
Hemogenic endothelium (HE) plays a pivotal and inevitable role in haematopoiesis and can generate all blood and endothelial lineage cells in the aorta‐gonad‐mesonephros of mouse embryos. Whether definitive HE can prospectively isolate pure HE from human pluripotent stem cells that can spontaneously differentiate into heterogeneous cells remains unknown. Here, we identified and validated a CD34dim subpopulation with hemogenic potential. We also purified CD34 cells with a CXCR4CD73 phenotype as a definitive HE population that generated haematopoietic stem cells and lymphocytes. The frequency of CXCR4CD73CD34dim was evidently increased by bone morphogenetic protein 4, and purified HE cells differentiated into haematopoietic cells with myeloid and T lymphoid lineages including Vδ2+ subset of γ/δ T cells. We developed a simple method to purify HE cells that were enriched in CD34dim cells. We uncovered an initial step in differentiating haematopoietic lineage cells that could be applied to basic and translational investigations into regenerative medicine.

Purified hemogenic endothelium (HE) was successfully isolated in pluripotent stem cells at Day 5. Definitive HE which is defined by CXCR4CD73 CD34+ cells, was enriched in CD34dim population. CXCR4CD73 phenotype was enriched in most CD34 cells including CD34dim and CD34bright population on Day 5, which is optimal day to isolate CD34 HE.  相似文献   
28.
For efficient catalysis and electrocatalysis well‐designed, high‐surface‐area support architectures covered with highly dispersed metal nanoparticles with good catalyst‐support interactions are required. In situ grown Ni nanoparticles on perovskites have been recently reported to enhance catalytic activities in high‐temperature systems such as solid oxide cells (SOCs). However, the micrometer‐scale primary particles prepared by conventional solid‐state reactions have limited surface area and tend to retain much of the active catalytic element within the bulk, limiting efficacy of such exsolution processes in low‐temperature systems. Here, a new, highly efficient, solvothermal route is demonstrated to exsolution from smaller scale primary particles. Furthermore, unlike previous reports of B‐site exsolution, it seems that the metal nanoparticles are exsolved from the A‐site of these perovskites. The catalysts show large active site areas and strong metal‐support interaction (SMSI), leading to ≈26% higher geometric activity (25 times higher mass activity with 1.4 V of Eon‐set) and stability for oxygen‐evolution reaction (OER) with only 0.72 µg base metal contents compared to typical 20 wt% Ni/C and even commercial 20 wt% Ir/C. The findings obtained here demonstrate the potential design and development of heterogeneous catalysts in various low‐temperature electrochemical systems including alkaline fuel cells and metal–air batteries.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号