首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64482篇
  免费   4672篇
  国内免费   1233篇
  2024年   89篇
  2023年   421篇
  2022年   1078篇
  2021年   1785篇
  2020年   1097篇
  2019年   1446篇
  2018年   1757篇
  2017年   1440篇
  2016年   2245篇
  2015年   3306篇
  2014年   3849篇
  2013年   4298篇
  2012年   5427篇
  2011年   5142篇
  2010年   3265篇
  2009年   3026篇
  2008年   3951篇
  2007年   3758篇
  2006年   3245篇
  2005年   2951篇
  2004年   2626篇
  2003年   2317篇
  2002年   2011篇
  2001年   1607篇
  2000年   1475篇
  1999年   1263篇
  1998年   556篇
  1997年   482篇
  1996年   403篇
  1995年   323篇
  1994年   295篇
  1993年   248篇
  1992年   437篇
  1991年   376篇
  1990年   333篇
  1989年   280篇
  1988年   218篇
  1987年   207篇
  1986年   168篇
  1985年   155篇
  1984年   85篇
  1983年   106篇
  1982年   74篇
  1981年   65篇
  1980年   63篇
  1979年   76篇
  1978年   58篇
  1977年   55篇
  1974年   69篇
  1969年   49篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
12.
COVID-19, caused by SARS-CoV-2, is an acute and rapidly developing pandemic, which leads to a global health crisis. SARS-CoV-2 primarily attacks human alveoli and causes severe lung infection and damage. To better understand the molecular basis of this disease, we sought to characterize the responses of alveolar epithelium and its adjacent microvascular endothelium to viral infection under a co-culture system. SARS-CoV-2 infection caused massive virus replication and dramatic organelles remodeling in alveolar epithelial cells, alone. While, viral infection affected endothelial cells in an indirect manner, which was mediated by infected alveolar epithelium. Proteomics analysis and TEM examinations showed viral infection caused global proteomic modulations and marked ultrastructural changes in both epithelial cells and endothelial cells under the co-culture system. In particular, viral infection elicited global protein changes and structural reorganizations across many sub-cellular compartments in epithelial cells. Among the affected organelles, mitochondrion seems to be a primary target organelle. Besides, according to EM and proteomic results, we identified Daurisoline, a potent autophagy inhibitor, could inhibit virus replication effectively in host cells. Collectively, our study revealed an unrecognized cross-talk between epithelium and endothelium, which contributed to alveolar–capillary injury during SARS-CoV-2 infection. These new findings will expand our understanding of COVID-19 and may also be helpful for targeted drug development.Subject terms: Mechanisms of disease, Viral infection  相似文献   
13.
14.
γ-Butyrolactone derivative molecules in Streptomyces play a crucial role in cell density control, secondary metabolism, and cell differentiation. As their synthesis level in the cell is very low compared to those of similar N-acyl homoserine lactone molecules from gram-negative bacteria, it is very hard to analyze them even with several hundredfold concentration of the culture broth. We have developed a very quick and easy detection method using an affinity capture technique with His-tagged receptor proteins and electrospray tandem mass spectrometry. Using Streptomyces coelicolor as a model system, SCB1 was detected from only 100 ml of the culture broth after solvent extraction. This method can be further applied to detection and quantitative analysis of butanolides and inhibitor screening of the receptor molecules.  相似文献   
15.
In the present study, non‐thermal dielectric barrier discharge (DBD) plasma of induced structural changes of morin resulted in the isolation of one previously undescribed benzofuranone derivative, along with two known compounds. The chemical structures of these degradation products were elucidated by UV, NMR and FAB‐MS spectroscopic analyses. The isolated three compounds showed potent antioxidative activities in two different tests, with IC50 values in the range of 12.9–41.8 μm in the 2,2′‐azino‐bis (3‐ethylbenzothiazoline‐6‐sulfonic acid) (ABTS+) radical scavenging activity, 19.0–71.9 μm for hydroxyl radical scavenging activity test. Furthermore, the new methoxylated benzofuranone exhibited enhancement of inhibitory effects against pancreatic lipase with an IC50 value of 90.7±1.6 μm , when compared to the parent morin. These results suggested that the degradation products isolated from plasma exposed morin might be beneficial for prevention of obesity and related diseases.  相似文献   
16.
17.
Alzheimer’s disease (AD) is a devastating neurodegenerative condition with no known cure. While current therapies target late-stage amyloid formation and cholinergic tone, to date, these strategies have proven ineffective at preventing disease progression. The reasons for this may be varied, and could reflect late intervention, or, that earlier pathogenic mechanisms have been overlooked and permitted to accelerate the disease process. One such example would include synaptic pathology, the disease component strongly associated with cognitive impairment. Dysregulated Ca2+ homeostasis may be one of the critical factors driving synaptic dysfunction. One of the earliest pathophysiological indicators in mutant presenilin (PS) AD mice is increased intracellular Ca2+ signaling, predominantly through the ER-localized inositol triphosphate (IP3) and ryanodine receptors (RyR). In particular, the RyR-mediated Ca2+ upregulation within synaptic compartments is associated with altered synaptic homeostasis and network depression at early (presymptomatic) AD stages. Here, we offer an alternative approach to AD therapeutics by stabilizing early pathogenic mechanisms associated with synaptic abnormalities. We targeted the RyR as a means to prevent disease progression, and sub-chronically treated AD mouse models (4-weeks) with a novel formulation of the RyR inhibitor, dantrolene. Using 2-photon Ca2+ imaging and patch clamp recordings, we demonstrate that dantrolene treatment fully normalizes ER Ca2+ signaling within somatic and dendritic compartments in early and later-stage AD mice in hippocampal slices. Additionally, the elevated RyR2 levels in AD mice are restored to control levels with dantrolene treatment, as are synaptic transmission and synaptic plasticity. Aβ deposition within the cortex and hippocampus is also reduced in dantrolene-treated AD mice. In this study, we highlight the pivotal role of Ca2+ aberrations in AD, and propose a novel strategy to preserve synaptic function, and thereby cognitive function, in early AD patients.  相似文献   
18.
Signaling through the T cell antigen receptor (TCR) is important for the homeostasis of naïve and memory CD4+ T cells. The significance of TCR signaling in regulatory T (Treg) cells has not been systematically addressed. Using an Ox40-cre allele that is prominently expressed in Treg cells, and a conditional null allele of the gene encoding p56Lck, we have examined the importance of TCR signaling in Treg cells. Inactivation of p56Lck resulted in abnormal Treg homeostasis characterized by impaired turnover, preferential redistribution to the lymph nodes, loss of suppressive function, and striking changes in gene expression. Abnormal Treg cell homeostasis and function did not reflect the involvement of p56Lck in CD4 function because these effects were not observed when CD4 expression was inactivated by Ox40-cre.The results make clear multiple aspects of Treg cell homeostasis and phenotype that are dependent on a sustained capacity to signal through the TCR.  相似文献   
19.
20.

Backgound  

It has been reported that Toll-like receptor 4 (TLR4) deficiency reduces infarct size after myocardial ischemia/reperfusion (MI/R). However, measurement of MI/R injury was limited and did not include cardiac function. In a chronic closed-chest model we assessed whether cardiac function is preserved in TLR4-deficient mice (C3H/HeJ) following MI/R, and whether myocardial and systemic cytokine expression differed compared to wild type (WT).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号