首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14320篇
  免费   985篇
  国内免费   7篇
  15312篇
  2024年   16篇
  2023年   48篇
  2022年   185篇
  2021年   267篇
  2020年   164篇
  2019年   212篇
  2018年   314篇
  2017年   295篇
  2016年   438篇
  2015年   770篇
  2014年   824篇
  2013年   943篇
  2012年   1323篇
  2011年   1173篇
  2010年   748篇
  2009年   664篇
  2008年   891篇
  2007年   857篇
  2006年   776篇
  2005年   669篇
  2004年   639篇
  2003年   542篇
  2002年   486篇
  2001年   376篇
  2000年   352篇
  1999年   276篇
  1998年   113篇
  1997年   85篇
  1996年   59篇
  1995年   59篇
  1994年   48篇
  1993年   48篇
  1992年   66篇
  1991年   72篇
  1990年   56篇
  1989年   64篇
  1988年   48篇
  1987年   30篇
  1986年   32篇
  1985年   34篇
  1984年   24篇
  1983年   27篇
  1982年   11篇
  1981年   13篇
  1979年   11篇
  1978年   16篇
  1977年   14篇
  1974年   20篇
  1973年   17篇
  1972年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
AIMS: Characterization of a mutated Geobacillus stearothermophilus L-arabinose isomerase used to increase the production rate of D-tagatose. METHODS AND RESULTS: A mutated gene was obtained by an error-prone polymerase chain reaction using L-arabinose isomerase gene from G. stearothermophilus as a template and the gene was expressed in Escherichia coli. The expressed mutated L-arabinose isomerase exhibited the change of three amino acids (Met322-->Val, Ser393-->Thr, and Val408-->Ala), compared with the wild-type enzyme and was then purified to homogeneity. The mutated enzyme had a maximum galactose isomerization activity at pH 8.0, 65 degrees C, and 1.0 mM Co2+, while the wild-type enzyme had a maximum activity at pH 8.0, 60 degrees C, and 1.0-mM Mn2+. The mutated L-arabinose isomerase exhibited increases in D-galactose isomerization activity, optimum temperature, catalytic efficiency (kcat/Km) for D-galactose, and the production rate of D-tagatose from D-galactose. CONCLUSIONS: The mutated L-arabinose isomerase from G. stearothermophilus is valuable for the commercial production of D-tagatose. SIGNIFICANCE AND IMPACT OF THE STUDY: This work contributes knowledge on the characterization of a mutated L-arabinose isomerase, and allows an increased production rate for D-tagatose from D-galactose using the mutated enzyme.  相似文献   
992.
Ribosomes play an integral part in plant growth, development, and defence responses. We report here the role of ribosomal protein large (RPL) subunit QM/RPL10 in nonhost disease resistance. The RPL10-silenced Nicotiana benthamiana plants showed compromised disease resistance against nonhost pathogen Pseudomonas syringae pv. tomato T1. The RNA-sequencing analysis revealed that many genes involved in defence and protein translation mechanisms were differentially affected due to silencing of NbRPL10. Arabidopsis AtRPL10 RNAi and rpl10 mutant lines showed compromised nonhost disease resistance to P. syringae pv. tomato T1 and P. syringae pv. tabaci. Overexpression of AtRPL10A in Arabidopsis resulted in reduced susceptibility against host pathogen P. syringae pv. tomato DC3000. RPL10 interacts with the RNA recognition motif protein and ribosomal proteins RPL30, RPL23, and RPS30 in the yeast two-hybrid assay. Silencing or mutants of genes encoding these RPL10-interacting proteins in N. benthamiana or Arabidopsis, respectively, also showed compromised disease resistance to nonhost pathogens. These results suggest that QM/RPL10 positively regulates the defence and translation-associated genes during nonhost pathogen infection.  相似文献   
993.
The draft genome sequence of Lactobacillus salivarius GJ-24 isolated from the feces of healthy adults was determined. Its properties, including milk fermentation activity and bacteriocin production, suggest its potential uses as a probiotic lactic acid bacterium and start culture for dairy products.  相似文献   
994.
The ability of glycinecin A, a bacteriocin derived from Xanthomonas campestris pv. glycines 8ra, to kill closely related bacteria has been demonstrated previously by our group (S. G. Heu et al., Appl. Environ. Microbiol. 67:4105-4110, 2001). In the present study, we aimed at determining the glycinecin A-induced cause of death. Treatment with glycinecin A caused slow dissipation of membrane potential and rapid depletion of the pH gradient. Glycinecin A treatment also induced leakage of potassium ions from X. campestris pv. vesicatoria YK93-4 cells and killed sensitive bacterial cells in a dose-dependent manner. Sensitive cells were killed within 2 h of incubation, most likely due to the potassium ion efflux caused by glycinecin A. These results suggest that the bactericidal mechanism of action of glycinecin A is correlated with the permeability of membranes to hydroxyl and potassium ions, leading to the lethal activity of the bacteriocin on the target bacteria.  相似文献   
995.
Previously the development of a hyper acetone‐butanol‐ethanol (ABE) producing Clostridium acetobutylicum BKM19 strain capable of producing 30.5% more total solvent by random mutagenesis of its parental strain PJC4BK, which is a buk mutant C. acetobutylicum ATCC 824 strain is reported. Here, BKM19 and PJC4BK strains are re‐sequenced by a high‐throughput sequencing technique to understand the mutations responsible for enhanced solvent production. In comparison with the C. acetobutylicum PJC4BK, 13 single nucleotide variants (SNVs), one deletion and one back mutation SNV are identified in the C. acetobutylicum BKM19 genome. Except for one SNV found in the megaplasmid, all mutations are found in the chromosome of BKM19. Among them, a mutation in the thlA gene encoding thiolase is further studied with respect to enzyme activity and butanol production. The mutant thiolase (thlAV5A) is showed a 32% higher activity than that of the wild‐type thiolase (thlAWT). In batch fermentation, butanol production is increased by 26% and 23% when the thlAV5A gene is overexpressed in the wild‐type C. acetobutylicum ATCC 824 and in its derivative, the thlA‐knockdown TKW‐A strain, respectively. Based on structural analysis, the mutation in thiolase does not have a direct effect on the regulatory determinant region (RDR). However, the mutation at the 5th residue seems to influence the stability of the RDR, and thus, increases the enzymatic activity and enhances solvent production in the BKM19 strain.  相似文献   
996.
997.
Although it has not been extensively studied, a significant volume of literature suggests that TREK2 will probably turn out to be an important channel in charge of tuning neuronal transmitter and hormone levels. Thus, pharmacological tools which can manipulate this channel, such as selective agonists are essential both in drug design and to further our understanding of this system. Our investigations have shown that sulfonate (‘O’) chalcone and sulfonamide (‘N’) chalcones regulate the TREK2 channel in remarkably different ways: sulfonamide chalcone 5 behaved as an inhibitor with an IC50 of 62 μM, whereas the sulfonate analogue 11 activated TREK2 with EC50 value of 167 μM.  相似文献   
998.
A series of N-4-methansulfonamidobenzyl-N'-2-substituted-4-tert-butylbenzyl thioureas were prepared for the study of their agonistic/antagonistic activities to the vanilloid receptor in rat DRG neurons. Their structure-activity relationship reveals that there is a space for another hydrophobic binding interaction around 2-position in 4-tert-butylbenzyl region. Among the prepared derivatives, 6n show the highest antagonistic activity against the vanilloid receptor (IC(50)=15 nM).  相似文献   
999.
We recently found that the concentration of HCO3- in guinea-pig saliva is very similar to that of human saliva; however, the entity that regulates HCO3- transport has not yet been fully characterized. In order to investigate the mechanism of HCO3- transport, we identified, cloned, and characterized a sodium bicarbonate (Na(+)/HCO3- cotransporter found in guinea-pig parotid glands (gpNBC1). The gpNBC1 gene encodes a 1079-amino acid protein that has 95% and 96% homology with human and mouse parotid NBC1, respectively. Oocytes expressing gpNBC1 were exposed to HCO3- or Na(+)-free solutions, which resulted in a marked change in membrane potentials (V(m)), suggesting that gpNBC1 is electrogenic. Likewise, a gpNBC1-mediated pH recovery was observed in gpNBC1 transfected human hepatoma cells; however, in the presence of 4, 4-diisothiocyanostilbene-2,2-disulfonic acid, a specific NBC1 inhibitor, such changes in V(m) and pH(i) were not observed. Together, the data show that the cloned guinea-pig gene is a functional, as well as sequence homologue of human NBC1.  相似文献   
1000.
Lipase (LP) was immobilized on electrospun and ethanol-dispersed polystyrene–poly(styrene-co-maleic anhydride) (PS–PSMA) nanofibers (EtOH-NF) in the form of enzyme precipitate coatings (EPCs). LP precipitate coatings (EPCs-LP) were prepared in a three-step process, consisting of covalent attachment, LP precipitation, and crosslinking of precipitated LPs onto the covalently attached LPs via glutaraldehyde treatment. The LP precipitation was performed by adding various concentrations of ammonium sulfate (20–50%, w/v). EPCs-LP improved the LP activity and stability when compared to covalently attached LPs (CA-LP) and the enzyme coatings of LPs (EC-LP) without the LP precipitation. For example, the use of 40% (w/v) ammonium sulfate resulted in EPC40-LP with the highest activity, which was 4.0 and 3.6 times higher than those of CA-LP and EC-LP, respectively. After 165-day incubation under rigorous shaking at 200 rpm, the residual activities of EPC50-LP were 0.5 μM/min mg of EtOH-NF, representing 113 and 75 times higher than those of CA-LP and EC-LP, respectively. When LP was partially purified via a simple ammonium sulfate precipitation and dialysis, both activities and stabilities of EC-LP and EPC-LP could be marginally improved. It is anticipated that the improved LP activity and stability in the form of EPCs would allow for their potential applications in various bioconversion processes such as biodiesel production and ibuprofen resolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号