首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23624篇
  免费   1685篇
  国内免费   12篇
  2024年   29篇
  2023年   77篇
  2022年   273篇
  2021年   457篇
  2020年   277篇
  2019年   359篇
  2018年   602篇
  2017年   458篇
  2016年   774篇
  2015年   1248篇
  2014年   1366篇
  2013年   1561篇
  2012年   2022篇
  2011年   1918篇
  2010年   1247篇
  2009年   1042篇
  2008年   1498篇
  2007年   1320篇
  2006年   1188篇
  2005年   1066篇
  2004年   1070篇
  2003年   869篇
  2002年   874篇
  2001年   643篇
  2000年   650篇
  1999年   431篇
  1998年   183篇
  1997年   138篇
  1996年   127篇
  1995年   93篇
  1994年   92篇
  1993年   79篇
  1992年   160篇
  1991年   128篇
  1990年   91篇
  1989年   108篇
  1988年   76篇
  1987年   66篇
  1986年   72篇
  1985年   54篇
  1984年   47篇
  1983年   43篇
  1982年   30篇
  1981年   26篇
  1978年   29篇
  1976年   32篇
  1975年   29篇
  1973年   34篇
  1971年   23篇
  1969年   25篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Choi WT  Youn YC  Han ES  Lee CS 《Neurochemical research》2004,29(10):1807-1816
The present study investigated the effect of 1-methylated beta-carbolines (harmaline, harmalol and harmine) on change in the mitochondrial membrane permeability and cell death due to reactive nitrogen species in differentiated PC12 cells. beta-Carbolines, caspase inhibitors (z-LEHD.fmk and z-DQMD.fmk) and antioxidants (N-acetylcysteine, dithiothreitol, melatonin, carboxy-PTIO and uric acid) depressed cell viability loss due to 3-morpholinosydnonimine (SIN-1) in PC12 cells. beta-Carbolines inhibited the nuclear damage, the decrease in mitochondrial transmembrane potential, the cytochrome c release, the formation of reactive oxygen species and the depletion of GSH caused by SIN-1 in PC12 cells. beta-Carbolines decreased the SIN-1-induced formations of 3-nitrotyrosine, malondialdehyde and carbonyls in PC12 cells. The results show that 1-methylated beta-carbolines attenuate SIN-1-induced mitochondrial damage. This results in the inhibition of caspase-9 and -3 and apoptotic cell death in PC12 cells by suppressing the toxic actions of reactive oxygen and nitrogen species, including the GSH depletion.  相似文献   
992.
It has been suggested that infectious entry of rubella virus (RV) is conducted by receptor mediated endocytosis. To explore the cellular entry mechanism of RV, inhibitory effects of drugs affecting various endocytic pathways on RV entry into VeroE6 cells were analyzed. Results showed that RV infectious entry into VeroE6 cells is mediated by clathrin-dependent endocytosis and not by caveolae-mediated endocytosis. Moreover, chemical inhibition of macropinocytosis such as treatments of amiloride, actin and microtubule-disrupting drug significantly reduced RV infection. Considering that macropinocytosis is inducible endocytosis by cellular stimulations, clathrin-mediated endocytosis is likely to be a major route of RV infectious entry.  相似文献   
993.
Shin R  An JM  Park CJ  Kim YJ  Joo S  Kim WT  Paek KH 《Plant physiology》2004,135(1):561-573
Capsicum annuum tobacco mosaic virus (TMV)-induced clone 1 (CaTin1) gene was expressed early during incompatible interaction of hot pepper (Caspsicum annuum) plants with TMV and Xanthomonas campestris. RNA-blot analysis showed that CaTin1 gene was expressed only in roots in untreated plants and induced mainly in leaf in response to ethylene, NaCl, and methyl viologen but not by salicylic acid and methyl jasmonate. The ethylene dependence of CaTin1 induction upon TMV inoculation was demonstrated by the decrease of CaTin1 expression in response to several inhibitors of ethylene biosynthesis or its action. Transgenic tobacco (Nicotiana tabacum) plants expressing CaTin1 gene in sense- or antisense-orientation showed interesting characteristics such as the accelerated growth and the enhanced resistance to biotic as well as abiotic stresses. Such characteristics appear to be caused by the elevated level of ethylene and H2O2. Moreover, in transgenic plants expressing antisense CaTin1 gene, the expression of some pathogenesis-related genes was enhanced constitutively, which may be mainly due to the increased ethylene level. The promoter of CaTin1 has four GCC-boxes, two AT-rich regions, and an elicitor-inducible W-box. The induction of the promoter activity by ethylene depends on GCC-boxes and by TMV on W-box. Taken together, we propose that the CaTin1 up-regulation or down-regulation interferes with the redox balance of plants leading to the altered response to ethylene and biotic as well as abiotic stresses.  相似文献   
994.
Chung E  Park JM  Oh SK  Joung YH  Lee S  Choi D 《Planta》2004,220(2):286-295
The isolated full-length Capsicum annuum calcium-dependent protein kinase 3 (CaCDPK3) cDNA clone was selected from the chili pepper expressed sequence tag database (). Phylogenetic analysis based on the deduced amino acid sequence of CaCDPK3 cDNA revealed significant sequence similarity to the winter squash (Cucurbita maxima) CmCPK2 gene (81% identity). Genomic gel blot analysis disclosed that CaCDPK3 belongs to a multigene family in the pepper genome. CaCDPK3 expression was root tissue-specific, as shown by Northern blot data. The gene was rapidly induced in response to various osmotic stress factors and exogenous abscisic acid application in pepper leaves. Moreover, CaCDPK3 RNA expression was induced by an incompatible pathogen and by plant defense-related chemicals such as ethephon, salicylic acid and jasmonic acid. The biochemical properties of CaCDPK3 were investigated using a CaCDPK3 and glutathione S-transferase (GST) fusion protein. The recombinant proteins retained calcium-binding ability, and displayed autophosphorylation activity in vitro in a calcium-dependent manner. Further transient-expression studies showed that CaCDPK3 fused with soluble modified green fluorescent protein (smGFP) localized to the cytosol in chili pepper protoplasts. We propose that CaCDPK3 is implicated in biotic and abiotic stresses in pepper plants.  相似文献   
995.
Cho MK  Lee GH  Park EY  Kim SG 《Tissue & cell》2004,36(5):293-305
Unbalanced accumulation of fibers in extracellular matrix (ECM) results from attachment and activation of hepatic stellate cells (HSCs) during chronic liver diseases, in which the content of hyaluronic acid (HA), a glycosaminoglycan, in ECM changes. No information is available on the effect of HA on adhesion and activation of HSCs although that of collagen (Col) on HSCs was extensively studied. This study investigated the effects of HA with or without Col on adhesion of HSCs or the rate of DNA synthesis. Attachment of primary cultured HSCs was microscopically monitored in the plate simultaneously coated with HA or other ECM components. HA inhibited adhesion of quiescent HSCs at least up to 7 days after seeding, whereas HSCs were adherent to plastic or type I collagen (Col-I), type III collagen (Col-III), type IV collagen (Col-IV) or fibronectin. Both microscopy and alpha-smooth muscle actin immunocytochemistry revealed that the number of HSCs, which had been re-seeded after 15 days of culture, attached to HA-coated area was remarkably lower compared to that of HSCs on Col-I or plastic. Incorporation of HA into Col-I prevented adhesion of activated HSCs to matrix film. The number of HSCs adherent to HA at early times after seeding was minimal and significantly lower than that of the cells adherent to plastic. In contrast, either Col-I or Col-IV increased the number of adherent cells. Attachment of HSCs to plastic was inhibited by soluble HA in culture medium. CD44, the cell surface receptor to which HA binds, was immunochemically detected in HSCs. Adhesion of HSCs to plastic, HA or Col-I was not changed by anti-CD44 antibody. Either HA or Col increased the basal or platelet-derived growth factor-inducible rate of thymidine incorporation into DNA in HSCs. In conclusion, HA inhibits adhesion of quiescent or activated HSCs in spite of its stimulation of DNA synthesis, whereas Col increases HSC attachment and DNA synthesis, and inhibition of HSC adhesion by HA does not involve CD44.  相似文献   
996.
Jang HH  Lee KO  Chi YH  Jung BG  Park SK  Park JH  Lee JR  Lee SS  Moon JC  Yun JW  Choi YO  Kim WY  Kang JS  Cheong GW  Yun DJ  Rhee SG  Cho MJ  Lee SY 《Cell》2004,117(5):625-635
Although a great deal is known biochemically about peroxiredoxins (Prxs), little is known about their real physiological function. We show here that two cytosolic yeast Prxs, cPrxI and II, which display diversity in structure and apparent molecular weights (MW), can act alternatively as peroxidases and molecular chaperones. The peroxidase function predominates in the lower MW forms, whereas the chaperone function predominates in the higher MW complexes. Oxidative stress and heat shock exposure of yeasts causes the protein structures of cPrxI and II to shift from low MW species to high MW complexes. This triggers a peroxidase-to-chaperone functional switch. These in vivo changes are primarily guided by the active peroxidase site residue, Cys(47), which serves as an efficient "H(2)O(2)-sensor" in the cells. The chaperone function of these proteins enhances yeast resistance to heat shock.  相似文献   
997.
Genomic analysis of the hyperthermophilic archaeon Pyrococcus furiosus revealed the presence of an open reading frame (ORF PF1939) similar to the enzymes in glycoside hydrolase family 13. This amylolytic enzyme, designated PFTA (Pyrococcus furiosus thermostable amylase), was cloned and expressed in Escherichia coli. The recombinant PFTA was extremely thermostable, with an optimum temperature of 90 degrees C. The substrate specificity of PFTA suggests that it possesses characteristics of both alpha-amylase and cyclodextrin-hydrolyzing enzyme. Like typical alpha-amylases, PFTA hydrolyzed maltooligosaccharides and starch to produce mainly maltotriose and maltotetraose. However, it could also attack and degrade pullulan and beta-cyclodextrin, which are resistant to alpha-amylase, to primarily produce panose and maltoheptaose, respectively. Furthermore, acarbose, a potent alpha-amylase inhibitor, was drastically degraded by PFTA, as is typical of cyclodextrin-hydrolyzing enzymes. These results confirm that PFTA possesses novel catalytic properties characteristic of both alpha-amylase and cyclodextrin-hydrolyzing enzyme.  相似文献   
998.
It has been estimated that less than 1% of the microorganisms in nature can be cultivated by conventional techniques. Thus, the classical approach of isolating enzymes from pure cultures allows the analysis of only a subset of the total naturally occurring microbiota in environmental samples enriched in microorganisms. To isolate useful microbial enzymes from uncultured soil microorganisms, a metagenome was isolated from soil samples, and a metagenomic library was constructed by using the pUC19 vector. The library was screened for amylase activity, and one clone from among approximately 30,000 recombinant Escherichia coli clones showed amylase activity. Sequencing of the clone revealed a novel amylolytic enzyme expressed from a novel gene. The putative amylase gene (amyM) was overexpressed and purified for characterization. Optimal conditions for the enzyme activity of the AmyM protein were 42 degrees C and pH 9.0; Ca2+ stabilized the activity. The amylase hydrolyzed soluble starch and cyclodextrins to produce high levels of maltose and hydrolyzed pullulan to panose. The enzyme showed a high transglycosylation activity, making alpha-(1, 4) linkages exclusively. The hydrolysis and transglycosylation properties of AmyM suggest that it has novel characteristics and can be regarded as an intermediate type of maltogenic amylase, alpha-amylase, and 4-alpha-glucanotransferase.  相似文献   
999.
1000.
Chitosan sponges as tissue engineering scaffolds for bone formation   总被引:15,自引:0,他引:15  
Rat calvarial osteoblasts were grown in porous chitosan sponges fabricated by freeze drying. The prepared chitosan sponges had a porous structure with a 100-200 microm pore diameter, which allowed cell proliferation. Cell density, alkaline phosphatase activity and calcium deposition were monitored for up to 56 d culture. Cell numbers were 4 x 10(6) (day 1), 11 x 10(6) (day 28) and 12 x 10(6) (day 56) per g sponge. Calcium depositions were 9 (day 1), 40 (day 28) and 48 (day 56) microg per sponge. Histological results corroborated that bone formation within the sponges had occurred. These results show that chitosan sponges can be used as effective scaffolding materials for tissue engineered bone formation in vitro.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号