首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5461篇
  免费   365篇
  国内免费   1篇
  2024年   5篇
  2023年   24篇
  2022年   78篇
  2021年   115篇
  2020年   84篇
  2019年   110篇
  2018年   182篇
  2017年   136篇
  2016年   229篇
  2015年   297篇
  2014年   331篇
  2013年   398篇
  2012年   502篇
  2011年   519篇
  2010年   330篇
  2009年   291篇
  2008年   375篇
  2007年   351篇
  2006年   284篇
  2005年   241篇
  2004年   241篇
  2003年   203篇
  2002年   179篇
  2001年   48篇
  2000年   53篇
  1999年   37篇
  1998年   28篇
  1997年   15篇
  1996年   12篇
  1995年   11篇
  1994年   11篇
  1993年   17篇
  1992年   12篇
  1991年   7篇
  1990年   3篇
  1989年   10篇
  1988年   7篇
  1986年   6篇
  1985年   2篇
  1983年   8篇
  1982年   4篇
  1981年   3篇
  1980年   4篇
  1976年   3篇
  1975年   3篇
  1973年   2篇
  1972年   2篇
  1969年   3篇
  1967年   3篇
  1962年   1篇
排序方式: 共有5827条查询结果,搜索用时 31 毫秒
91.

Key message

Arabidopsis gulliver3 - D/dwarf4 - D displays growth-promoting phenotypes due to activation tagging of a key brassinosteroid biosynthetic gene DWARF4. In gul3-D/dwf4-D , the Jasmonate and Salicylate signaling pathways were relatively activated and suppressed, respectively.

Abstract

Energy allocation between growth and defense is elegantly balanced to achieve optimal development in plants. Brassinosteroids (BRs), steroidal hormones essential for plant growth, are regulated by other plant hormones, including auxin and jasmonates (JA); auxin stimulates the expression of a key brassinosteroid (BR) biosynthetic gene, DWARF4 (DWF4), whereas JA represses it. To better understand the interaction mechanisms between growth and defense, we isolated a fast-growing mutant, gulliver3-D (gul3-D), that resulted from the activation tagging of DWF4, and examined the response of this mutant to defense signals, including JA, Pseudomonas syringae pv. tomato (Pst DC3000) infection, and wounding. The degree of root growth inhibition following MeJA treatment was significantly decreased in gul3-1D/dwf4-5D relative to the wild type, suggesting that JA signaling is partially desensitized in gul3-1D. Quantitative RT-PCR analysis of the genes involved in JA and salicylic acid (SA) responses, including MYC2, PDF1.2, CORI3, PR1, and PR2, revealed that JA signaling was preferentially activated in gul3-1D, whereas SA signaling was suppressed. As a result, gul3-1D was more susceptible to a biotrophic pathogen, Pst DC3000. Based on our results, we propose a model in which BR and JA cooperate to balance energy allocation between growth and defense responses. In ambient conditions, BRs promote plant growth; however, when stresses trigger JA signaling, JA compromises BR signaling by downregulating DWF4 expression.  相似文献   
92.
93.
In order to characterize the significance of sulfur (S) nutrition in protein expression under iron (Fe)-deficient conditions, gel-based proteomic analysis was performed with the leaves of Brassica napus exposed to S and Fe combined treatments: sufficient in S and Fe (+S/+Fe, control), sufficient S but Fe deprived (+S/?Fe), deprived S but sufficient Fe (?S/+Fe), and deprived S and Fe (?S/?Fe). The resulting data showed that 15 proteins were down-regulated due to production of oxidative damage as indicated by H2O2 and O 2 ?1 localizations and due to leaf chlorosis in leaves in S-deprived leaves either in presence (?S/+Fe) or absence of Fe (?S/?Fe), whereas these down-regulated proteins were well expressed in the presence of S (+S/?Fe) compared to control (+S/+Fe). In addition, two proteins were up-regulated under S-deprived condition in presence (?S/+Fe) and absence of (?S/?Fe) Fe. The functional classification of these identified proteins was estimated that 40 % of the proteins belong to chloroplast precursor, and rest of the proteins belongs to hypothetical proteins, RNA binding, secondary metabolism and unknown proteins. On the other hand, five protein spots from S deprived (?S/+Fe) and ten spots from Fe deprived (?S/?Fe) conditions were absent, whereas they were well expressed in presence of S (+S/?Fe) compared to control plants (+S/+Fe). These results suggest that sulfur nutrition plays an important role in alleviating protein damage in Fe-deficient plants and adaptation to Fe-deficiency in oilseed rape.  相似文献   
94.
Microbial-surface display is the expression of proteins or peptides on the surface of cells by fusing an appropriate protein as an anchoring motif. Here, the outer membrane protein W (OmpW) was selected as a fusion partner for functional expression of Pseudomonas fluorescence SIK W1 lipase (TliA) on the cell-surface of Escherichia coli. Localization of the truncated OmpW-TliA fusion protein on the cell-surface was confirmed by immunoblotting and functional assay of lipase activity. Enantioselective hydrolysis of rac-phenylethyl butanoate by the displayed lipase resulted in optically active (R)-phenyl ethanol with 96 % enantiomeric excess and 44 % of conversion in 5 days. Thus, a small outer membrane protein OmpW, is a useful anchoring motif for displaying an active enzyme of ~50 kDa on the cell-surface and the surface-displayed lipase can be employed as an enantioselective biocatalyst in organic synthesis.  相似文献   
95.
To characterize the denitrifying phosphorus (P) uptake properties of “Candidatus Accumulibacter phosphatis,” a sequencing batch reactor (SBR) was operated with acetate. The SBR operation was gradually acclimated from anaerobic-oxic (AO) to anaerobic-anoxic-oxic (A2O) conditions by stepwise increases of nitrate concentration and the anoxic time. The communities of “Ca. Accumulibacter” and associated bacteria at the initial (AO) and final (A2O) stages were compared using 16S rRNA and polyphosphate kinase genes and using fluorescence in situ hybridization (FISH). The acclimation process led to a clear shift in the relative abundances of recognized “Ca. Accumulibacter” subpopulations from clades IIA > IA > IIF to clades IIC > IA > IIF, as well as to increases in the abundance of other associated bacteria (Dechloromonas [from 1.2% to 19.2%] and “Candidatus Competibacter phosphatis” [from 16.4% to 20.0%]), while the overall “Ca. Accumulibacter” abundance decreased (from 55.1% to 29.2%). A series of batch experiments combined with FISH/microautoradiography (MAR) analyses was performed to characterize the denitrifying P uptake properties of the “Ca. Accumulibacter” clades. In FISH/MAR experiments using slightly diluted sludge (∼0.5 g/liter), all “Ca. Accumulibacter” clades successfully took up phosphorus in the presence of nitrate. However, the “Ca. Accumulibacter” clades showed no P uptake in the presence of nitrate when the sludge was highly diluted (∼0.005 g/liter); under these conditions, reduction of nitrate to nitrite did not occur, whereas P uptake by “Ca. Accumulibacter” clades occurred when nitrite was added. These results suggest that the “Ca. Accumulibacter” cells lack nitrate reduction capabilities and that P uptake by “Ca. Accumulibacter” is dependent upon nitrite generated by associated nitrate-reducing bacteria such as Dechloromonas and “Ca. Competibacter.”  相似文献   
96.
It has been recognized that ginsenoside Rg3 is not naturally produced in ginseng although this ginsenoside can accumulate in red ginseng as the result of a thermal process. In order to determine whether or not Rg3 is synthesized in ginseng, hairy roots were treated with methyl jasmonate (MJ). From HPLC analysis, no peak for Rg3 was observed in the controls. However, Rg3 did accumulate in hairy roots that were MJ-treated for 7?days. Rg3 content was 0.42?mg/g (dry weight). To gain more insight into the effects of MJ on UDP-glucosyltransferase (UGT) activity, we attempted to evaluate ginsenoside Rg3 biosynthesis by UGT. A new peak for putative Rg3 was observed, which was confirmed by LC-MS/MS analysis. Our findings indicate that the proteins extracted from our hairy root lines can catalyze Rg3 from Rh2. This suggests that our ginseng hairy root lines possess Rg3 biosynthesis capacity.  相似文献   
97.
98.
Radiolytic transformation of the isoflavonoid rotenone (1) with γ-irradiation afforded two new degraded products, rotenoisins A (2) and (3). The structures of the two new rotenone derivatives were elucidated on the basis of spectroscopic methods. The new products 2 and 3 exhibited significantly enhanced inhibitory activities against pancreatic lipase and adipocyte differentiation in 3T3-L1 cells when compared to parent rotenone.  相似文献   
99.
Alzheimer’s disease drug discovery regarding exploration into the molecules and processes has focused on the intrinsic causes of the brain disorder correlated with the accumulation of amyloid-β. An anti-amyloidogenic bis-styrylbenzene derivative, KMS80013, showed excellent oral bioavailability (F = 46.2%), facilitated brain penetration (26%, iv) in mouse and target specific in vivo efficacy in acute AD mouse model attenuating the cognitive deficiency in Y-maze test. Acute toxicity (LD50 >2000 mg/kg) and hERG channel inhibition (14% at 10 μM) results indicated safety of KMS80013.  相似文献   
100.
In Parkinson’s disease, the motor impairments are mainly caused by the death of dopaminergic neurons. Among the enzymes which are involved in the biosynthesis and catabolism of dopamine, monoamine oxidase B (MAO-B) has been a therapeutic target of Parkinson’s disease. However, due to the undesirable adverse effects, development of alternative MAO-B inhibitors with greater optimal therapeutic potential towards Parkinson’s disease is urgently required. In this study, we designed and synthesized the oxazolopyridine and thiazolopyridine derivatives, and biologically evaluated their inhibitory activities against MAO-B. Structure–activity relationship study revealed that the piperidino group was the best choice for the R1 amino substituent to the oxazolopyridine core structure and the activities of the oxazolopyridines with various phenyl rings were between 267.1 and 889.5 nM in IC50 values. Interestingly, by replacement of the core structure from oxazolopyrine to thiazolopyridine, the activities were significantly improved and the compound 1n with the thiazolopyridine core structure showed the most potent activity with the IC50 value of 26.5 nM. Molecular docking study showed that van der Waals interaction in the human MAO-B active site could explain the enhanced inhibitory activities of thiazolopyridine derivatives.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号