首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   361篇
  免费   26篇
  2021年   5篇
  2020年   3篇
  2019年   4篇
  2018年   4篇
  2017年   3篇
  2016年   9篇
  2015年   14篇
  2014年   13篇
  2013年   27篇
  2012年   12篇
  2011年   10篇
  2010年   7篇
  2009年   13篇
  2008年   21篇
  2007年   21篇
  2006年   23篇
  2005年   22篇
  2004年   21篇
  2003年   17篇
  2002年   15篇
  2001年   21篇
  2000年   19篇
  1999年   15篇
  1998年   7篇
  1997年   8篇
  1996年   4篇
  1995年   5篇
  1994年   3篇
  1992年   1篇
  1991年   3篇
  1990年   6篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   7篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1977年   4篇
  1976年   1篇
  1975年   1篇
  1972年   3篇
  1970年   1篇
  1966年   1篇
排序方式: 共有387条查询结果,搜索用时 31 毫秒
101.
A recent commentary raised concerns about aspects of the model and assumptions used in a previous study which demonstrated that selection can favor chromosomal alleles that confer higher plasmid donation rates. Here, the authors of that previous study respond to the concerns raised.

In our original work [1], we demonstrated experimentally that selection can favor chromosomal alleles that confer higher plasmid donation rates, given the plasmid is beneficial and the recipient has an elevated chance of carrying the donor allele (i.e., preferential donation to kin). Our experiments demonstrated this effect via 2 mechanisms of preferential donation: biased conjugation rates and structured populations. We interpreted these results through the lens of kin selection theory (benefits via horizontal gene transfer to kin), supported by simulations and an analytical fitness function model. These results hold importance by outlining that the evolution of plasmid transfer rates (a key aspect of the antibiotic resistance crisis) is not necessarily the sole product of selection on the plasmid itself and forms part of a broader series of papers from our labs investigating the sociomicrobiology of plasmids [24].A new commentary raises concerns over our fitness function model, flagging issues with both the structure of the model and assumptions made in our analysis [5]. We stand by the general conclusions of our work but accept that our fitness function and stated analysis assumptions could be better formulated. Our initial fitness function is heuristic in the sense it was designed to capture general processes acting on the fitness of individuals, dependent on the plasmid and donor allele status—without explicitly modeling the myriad demographic events of dispersal, reproduction, conjugation, and death that result in selective shifts across a metapopulation of cells. Specifically, we captured the “force of infection” faced by an uninfected cell as the product of average plasmid prevalence and average donor allele prevalence in the local patch (pjqj; see commentary for notation details). We agree with the authors that this force of infection is better phrased as the average of the product ((1/N)∑pij qij), in part because this avoids the potential pathology under limit conditions described by the authors, but also because this approach better highlights that the particular social trait in question is an “other only” cooperative trait [6], illustrated by commentary equation [2], where transmission to self and transmission to others are separated. This separation has the important consequence of highlighting that unlike many microbial social traits where benefits accrue to a group (including self), a cooperative plasmid donor trait can only benefit other cells that lack the plasmid. Given established costs of donation (e.g., see figure S2 in our original article), this defines our “donor” behavior as an altruistic trait, which can, therefore, only be favored by selection given nonrandom interactions among individuals (e.g., [7]).Our experimental results outline 2 mechanisms of nonrandom interactions: preferential donation to kin and population structure. Each of these mechanisms will generate positive covariances between focal individual qij and non-self-recipient qj donor allele states (cov(qj, qij) > 0). The pathway via preferential donation to kin (order-of-magnitude differences according to our analyses and more recent measurements among lineages coexisting within natural populations [8]) will also likely generate positive covariances between donor and recipient abilities (cov(sij, qij) > 0). In contrast, to arrive at the result that selection always works against plasmid donor alleles (equation [4]), the commentary makes the assumption that both of the above covariances are zero. We suggest that the additional analyses begun by the authors are an exciting starting point to better map selection on donor alleles, under a broader array of defined assumptions on cell–cell and gene–gene structure, ideally informed by data on structures found in natural bacterial populations.  相似文献   
102.
In macroscopic organisms, aging is often obvious; in single-celled organisms, where there is the greatest potential to identify the molecular mechanisms involved, identifying and quantifying aging is harder. The primary results in this area have come from organisms that share the traits of a visibly asymmetric division and an identifiable juvenile phase. As reproductive aging must require a differential distribution of aged and young components between parent and offspring, it has been postulated that organisms without these traits do not age, thus exhibiting functional immortality. Through automated time-lapse microscopy, we followed repeated cycles of reproduction by individual cells of the model organism Escherichia coli, which reproduces without a juvenile phase and with an apparently symmetric division. We show that the cell that inherits the old pole exhibits a diminished growth rate, decreased offspring production, and an increased incidence of death. We conclude that the two supposedly identical cells produced during cell division are functionally asymmetric; the old pole cell should be considered an aging parent repeatedly producing rejuvenated offspring. These results suggest that no life strategy is immune to the effects of aging, and therefore immortality may be either too costly or mechanistically impossible in natural organisms.  相似文献   
103.
In budding yeast, the nuclear periphery forms a subcompartment in which telomeres cluster and SIR proteins concentrate. To identify the proteins that mediate chromatin anchorage to the nuclear envelope, candidates were fused to LexA and targeted to an internal GFP-tagged chromosomal locus. Their ability to shift the locus from a random to a peripheral subnuclear position was monitored in living cells. Using fusions that cannot silence, we identify YKu80 and a 312-aa domain of Sir4 (Sir4(PAD)) as minimal anchoring elements, each able to relocalize an internal chromosomal locus to the nuclear periphery. Sir4(PAD)-mediated tethering requires either the Ku complex or Esc1, an acidic protein that is localized to the inner face of the nuclear envelope even in the absence of Ku, Sir4 or Nup133. Finally, we demonstrate that Ku- and Esc1-dependent pathways mediate natural telomere anchoring in vivo. These data provide the first unambiguous identification of protein interactions that are both necessary and sufficient to localize chromatin to the nuclear envelope.  相似文献   
104.
105.
In 5% (v/v) trifluoroethanol, pH 5.5, 25 degrees C one of the acylphosphatases from Drosophila melanogaster (AcPDro2) forms fibrillar aggregates that bind thioflavin T and Congo red and have an extensive beta-sheet structure, as revealed by circular dichroism. Atomic force microscopy indicates that the fibrils and their constituent protofilaments have diameters compatible with those of natural amyloid fibrils. Spectroscopic and biochemical investigation, carried out using near- and far-UV circular dichroism, intrinsic and 1-anilino-8-naphthalenesulfonic acid-derived fluorescence, dynamic light scattering, and enzymatic activity assays, shows that AcPDro2 has, before aggregation, a secondary structure content packing around aromatic and hydrophobic residues, hydrodynamic diameter, and catalytic activity indistinguishable from those of the native protein. The native protein was found to have the same conformational stability under native and aggregating conditions, as determined from urea-induced unfolding. The kinetic analysis supports models in which AcPDro2 aggregates initially without need to unfold and subsequently undergoes a conformational change into amyloid-like structures. Although fully or partially unfolded states have a higher propensity to aggregate, the residual aggregation potential that proteins maintain upon complete folding can be physiologically relevant and be directly involved in the pathogenesis of some protein deposition diseases.  相似文献   
106.
The folding kinetics of human common-type acylphosphatase (cAcP) from its urea- and TFE-denatured states have been determined by stopped-flow fluorescence techniques. The refolding reaction from the highly unfolded state formed in urea is characterized by double exponential behavior that includes a slow phase associated with isomerism of the Gly53-Pro54 peptide bond. However, this slow phase is absent when refolding is initiated by dilution of the highly a-helical denatured state formed in the presence of 40% trifluoroethanol (TFE). NMR studies of a peptide fragment corresponding to residues Gly53-Gly69 of cAcP indicate that only the native-like trans isomer of the Gly-Pro peptide bond is significantly populated in the presence of TFE, whereas both the cis and trans isomers are found in an approximately 1:9 ratio for the peptide bond in aqueous solution. Molecular modeling studies in conjunction with NMR experiments suggest that the trans isomer of the Gly53-Pro54 peptide bond is stabilized in TFE by the formation of a nonnative-like hydrogen bond between the CO group of Gly53 and the NH group of Lys57. These results therefore reveal that a specific nonnative interaction in the denatured state can increase significantly the overall efficiency of refolding.  相似文献   
107.
The cytokeratin (CK) cytoskeleton, previously described by immunofluorescence in the ovarian follicle of Podarcis sicula, at the electron microscope results constituted by bundles of 10 nm thick intermediate filaments containing keratin. These bundles are better evident in the cytoplasm of the pyriform cell apex pointed toward the oocyte surface and mostly in the intercellular bridges connecting fully differentiated pyriform cells to the oocyte. During the differentiation of pyriform cells, the intermediate filament bundles first appear inside the intercellular bridge, when the small follicle cells progressively enlarge after their fusion with the oocyte and assume a morphology of "intermediate" cells. The present study also reports a comparative analysis by immunolabeling, SDS-PAGE, and immunoblotting with anticytokeratins CK8, CK18, and CK19 antibodies of both the ovarian follicle and the intestine of Podarcis sicula. These antibodies, specific to the keratins of monolayered intestinal cells, react also against those expressed in the oocytes of Xenopus laevis. This study shows the presence in the ovarian follicle of this reptile only of keratin forms of homologues to the CK8 and CK18 of mammals and the lack of CK19. The same analysis carried out utilizing AE1 and AE3 antibodies, which recognize most of the acidic and basic keratins in mammals, has shown additional forms of keratins specifically expressed in the ovarian follicle (50 kDa) and in both the examined tissues (49 and 60 kDa). The reported results indicate that in the ovarian follicle of this reptile, keratins have peculiar characteristics that can be explained by the unique structural function of the cytoskeleton in this system.  相似文献   
108.
The refolding kinetics of 13 proteins have been studied in the presence of 2,2,2-trifluoroethanol (TFE). Low concentrations of TFE increased the folding rates of all the proteins, whereas higher concentrations have the opposite effect. The extent of deceleration of folding correlates closely with similar effects of guanidine hydrochloride and can be related to the burial of accessible surface area during folding. For those proteins folding in a two-state manner, the extent of acceleration of folding correlates closely with the number of local backbone hydrogen bonds in the native structure. For those proteins that fold in a multistate manner, however, the extent of acceleration is much smaller than that predicted from the data for two-state proteins. These results support the concept that for two-state proteins the search for native-like contacts is a key aspect of the folding reaction, whereas the rate-determining steps for folding of multistate proteins are associated with the reorganization of stable structure within a collapsed state or with the search for native-like interactions within less structured regions.  相似文献   
109.
The aggregation of the alpha/beta protein acylphosphatase from Sulfolobus solfataricus has been studied under conditions in which the protein maintains a native-like, although destabilised, conformation and that therefore bear resemblance to a physiological medium. Static and dynamic light-scattering measurements indicate that under these conditions the protein aggregates rapidly, within two minutes. The initial aggregates are enzymatically active and have a secondary structure that is not yet characterized by the high content of cross-beta structure typical of amyloid, as inferred from Fourier transform infra-red and circular dichroism measurements. These species then convert slowly into enzymatically inactive aggregates that bind thioflavin T and Congo red, characteristic of amyloid structures, and contain extensive beta-sheet structure. Transmission electron microscopy reveals the presence in the latter aggregates of spherical species and thin, elongated protofibrils, both with diameters of 3-5 nm. Kinetic tests reveal that this process occurs without the need for dissolution and re-nucleation of the aggregates. Formation of thioflavin T-binding and beta-structured aggregates is substantially more rapid than unfolding of the native state, indicating that the initial aggregation process promotes formation of amyloid structures. Taken together, these findings suggest a mechanism of amyloid formation that may have physiological relevance and in which the amyloid structures result from reorganisation of the molecular interactions within the initially formed non-amyloid aggregates.  相似文献   
110.
Detection of vegetation typologies is of particular interest in epidemiological studies on animal diseases. This paper is focused on the automatic detection of grazing areas in southern Italy browsed by equines, oxen and sheep, mostly sedentary, with many in fenced areas for overnight stays. Results revealed Satellite Remote Sensing was an indispensable tool in area surveys for vegetation cover characterization. Our classification model shows an accuracy level of 90.21% and a precision of 92.69%. Results suggest similar application protocols can be used in areas with different vegetation cover to characterizing potential infection risk areas for geohelminths and other diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号