首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   397篇
  免费   15篇
  412篇
  2023年   2篇
  2021年   2篇
  2020年   2篇
  2019年   5篇
  2018年   8篇
  2016年   4篇
  2015年   6篇
  2014年   9篇
  2013年   20篇
  2012年   16篇
  2011年   26篇
  2010年   8篇
  2009年   12篇
  2008年   26篇
  2007年   15篇
  2006年   24篇
  2005年   20篇
  2004年   22篇
  2003年   16篇
  2002年   18篇
  2001年   4篇
  2000年   13篇
  1999年   9篇
  1998年   2篇
  1997年   3篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   19篇
  1991年   12篇
  1990年   11篇
  1989年   6篇
  1988年   8篇
  1987年   6篇
  1986年   4篇
  1985年   3篇
  1984年   2篇
  1983年   5篇
  1982年   4篇
  1981年   4篇
  1976年   3篇
  1975年   3篇
  1974年   4篇
  1973年   1篇
  1972年   3篇
  1971年   1篇
  1966年   1篇
  1962年   1篇
  1960年   1篇
排序方式: 共有412条查询结果,搜索用时 0 毫秒
171.
This study examined the effect of triterpenoid on the salt tolerance of lanosterol synthase deficient yeast mutant GIL77. The expression of the triterpenoid synthase gene under GAL1 promoter in GIL77 increased the triterpenoid concentration of both whole cell and plasma membrane fractions. Without the induction of the genes, the growth curve of BgbAS or RsM1 transformant depicted patterns similar to control cells in both the presence and absence of salt with growth inhibition at 500 mM NaCl. The induction of BgbAS and RsM1 gene expression slightly repressed growth compared with control cells in the absence of NaCl. The growth of GIL77 was significantly suppressed by the expression of BgbAS or RsM1 under salinity conditions. Of the triterpenoid synthase genes, BgbAS rather than RsM1 was found to strongly inhibit the growth of GIL77 cells under salt stressed conditions. The expression of the triterpenoid synthase gene in GIL77 also influenced their tolerance to other abiotic stresses. In contrast to the endogenous synthesis, the exogenous supply of triterpenoid in the culture medium appeared to occur in the plasma membrane fraction and enhanced the salt tolerance of GIL77. This study thus discussed the physiological significance of triterpenoid in relation to its possible role in modulating salt tolerance.  相似文献   
172.
Molecular glue for DNA is a small synthetic ligand that adheres two single-stranded DNAs to produce a double-stranded DNA. We previously devised a photoswitchable molecular glue (PMG) that uses external light stimuli to reversibly control DNA hybridization. To optimize the structure of PMG, we synthesized a series of PMGs and evaluated the effect of changing the methylene linker length on the binding affinity and photoresponse. From the comprehensive Tm and CSI-TOF-MS measurements, a PMG possessing a three-methylene linker with carbamate linkage produced maximum binding affinity and photoswitching ability. These results indicate that a small difference in the linker can significantly affect PMG function. These findings are useful for designing new photoswitchable DNA-binding ligands.  相似文献   
173.
174.
T. Hiramoto    R. Tobimatsu    N. Abe    T. Shiraishi    H. Oku    T. Yamada    Y. Ichinose 《Journal of Phytopathology》1995,143(1):47-51
Exudate collected from the cut end of barley seedlings exhibited both activities that induced systemic resistance and susceptibility against Erysiphe graminis f. sp. hordei race Hh4 depending on the time after pruning. Exudates collected between 3–6 h after pruning showed maximum activity that induced systemic resistance, whereas those during 9–12 h conversely induced susceptibility in barley seedlings. The accumulation of antifungal substances in barley leaves correlates to the timing, of induced resistance. The antifuntingal substances were watersoluble and severely affected the infection of E. graminis f. sp. hordei.  相似文献   
175.
176.
Cardiac ryanodine receptor gene (RyR2) mutations cause fatal arrhythmogenic diseases such as catecholaminergic polymorphic ventricular tachycardia and arrhythmogenic right ventricular cardiomyopathy. The N-terminal region of RyR2 is one of the hot spots for mutations. In this study, we investigated cardiac phenotypes of a knock-in mouse model carrying R420W mutation of RyR2. The N-terminal R420W mutation has already been found in juvenile sudden death cadavers of unrelated families. The depolarization-induced Ca2+ transient amplitude was significantly lower in cardiomyocytes from RyR2R420W/R420W mice compared with wild-type mice. The time to peak of the Ca2+ transient was significantly increased in RyR2R420W/R420W mice. Furthermore, the prolonged decay time from the peak of the Ca2+ transient was detected in RyR2R420W/R420W mice. ECG telemetry revealed that various types of arrhythmias were induced in RyR2R420W/R420W mice in response to administration of caffeine and adrenaline. The mutant mice showed high occurrences of arrhythmias in response to heart stimulants compared with wild-type mice. These findings suggest that R420W mutation impairs depolarization-induced Ca2+ oscillation in cardiomyocytes, which possibly results in sudden death due to stress-induced arrhythmias.  相似文献   
177.
An Fab’ antibody against heparin-binding epidermal growth factor-like growth factor (HB-EGF) was applied to achieve advanced tumor-targeted delivery of siRNA. Lipid nanoparticles (LNP) encapsulating siRNA (LNP-siRNA) were prepared, pegylated, and surface modified with Fab’ fragments of anti-HB-EGF antibody (αHB-EGF LNP-siRNA). αHB-EGF LNP-siRNA showed high-binding affinity to recombinant human HB-EGF in a Biacore assay. In addition, αHB-EGF LNP-siRNA selectively associated with cells expressing HB-EGF in vitro. Confocal microscopic images showed that siRNA formulated in αHB-EGF LNP-siRNA was efficiently internalized into MDA-MB-231 human breast cancer cells, on which HB-EGF is highly expressed. In addition, siRNA encapsulated in αHB-EGF LNP induced obvious suppression of both target mRNA and protein levels in MDA-MB-231 cells. These results indicate that αHB-EGF LNP have excellent potential to deliver siRNA to target cancer cells, resulting in effective gene silencing.  相似文献   
178.
179.
Increased oxidative stress plays a role in the pathogenesis of beta-cell dysfunction and death. We studied isoforms of NADPH oxidase components in islets of Langerhans isolated from rat pancreas and tumoral rat beta-cell line RINm5F cells by RT-PCR and sequencing of its products. RT-PCR revealed that isolated islets constitutively expressed mRNA of NADPH oxidase components, Nox1, Nox2, Nox4 and p22(phox) as membrane-associated components and p47(phox), Noxo1 (homologue of p47(phox)), Noxa1 (homologue of p67(phox)), and p40(phox) as cytosolic components. RINm5F cells showed a similar pattern of expression but Nox2 mRNA was not detected. Expression of Nox1, Nox4, Noxo1 and Noxa1 was confirmed by sequencing the PCR products. Immunohistochemistry revealed the expression of NADPH oxidase component in beta-cells of rat pancreatic islets. Glucose-stimulated insulin secretion from isolated islets was suppressed by diphenyleneiodonium, a flavocytochrome inhibitor, but not by apocynin, an inhibitor of p47(phox) translocation to membranes. Our results suggest that the functional significance of NADPH oxidase in insulin secretion may merit further investigation.  相似文献   
180.
To investigate the nutritional regulation of lipid metabolism in fish, molecular characterization of lipases was conducted in red sea bream Pagrus major, and the effects of fasting and refeeding on their gene expression was examined. Together with data from a previous study, a total of four lipase genes were identified and characterized as lipoprotein lipase (LPL), hepatic lipase (HL) and pancreatic lipase (PL). These four lipase genes, termed LPL1, LPL2, HL and PL, share a high degree of similarity. LPL1 and LPL2 genes were expressed in various tissues including adipose tissue, gill, heart and hepatopancreas. HL gene was exclusively expressed in hepatopancreas. PL gene expression was detected in hepatopancreas and adipose tissue. Red sea bream LPL1 and LPL2 gene expression levels in hepatopancreas were increased during 48 h of fasting and decreased after refeeding, whereas no significant change in the expression levels of LPL1 and LPL2 was observed in adipose tissue, indicating that LPL1 and LPL2 gene expression is regulated in a tissue-specific manner in response to the nutritional state of fish. HL and PL gene expression was not affected by fasting and refeeding. The results of this study suggested that LPL, HL and PL gene expression is under different regulatory mechanisms in red sea bream with respect to the tissue-specificities and their nutritional regulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号