Summary The tryptophan synthase genes,trpA andtrpB, from a moderate thermophile,Bacillusstearothermophilus IFO13737, were expressed efficiently inEscherichiacoli. The recombinant tryptophan synthase amounted to 22% of the soluble cellular protein, and was purified to homogeneity by three steps. The enzyme is more thermostable thanE.coli tryptophan synthase, especially the subunit. The enzyme is also more resistant to sodium dodecylsulfate and methanol thanE.coli enzyme. 相似文献
In vascular smooth muscle cells (VSMCs), angiotensin II (AngII) induces transactivation of the EGF receptor (EGFR) which involves a metalloprotease that stimulates processing of heparin-binding EGF from its precursor. However, the identity and pharmacological sensitivity of the metalloprotease remain unclear. Here, we screened the effects of several metalloprotease inhibitors on AngII-induced EGFR transactivation in VSMCs. We found that an N-phenylsulfonyl-hydroxamic acid derivative [2R-[(4-biphenylsulfonyl)amino]-N-hydroxy-3-phenylpropinamide] (BiPS), previously known as matrix metalloprotease (MMP)-2/9 inhibitor, markedly inhibited AngII-induced EGFR transactivation, whereas the MMP-2 or -9 inhibition by other MMP inhibitors failed to block the transactivation. BiPS markedly inhibited AngII-induced ERK activation and protein synthesis without affecting AngII-induced intracellular Ca2+ elevation. VSMC migration induced by AngII was also inhibited not only by an EGFR inhibitor but also by BiPS. Thus, BiPS is a specific candidate to block AngII-induced EGFR transactivation and subsequent growth and migration of VSMCs, suggesting its potency to prevent vascular remodeling. 相似文献
A methylene group in the fluorinated carbon backbone of 1H,1H,2H,2H,8H,8H–perfluorododecanol (degradable telomer fluoroalcohol, DTFA) renders the molecule cleavable by microbial degradation into two fluorinated carboxylic acids. Several biodegradation products of DTFA are known, but their rates of conversion and fates in the environment have not been determined. We used liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) to quantitatively investigate DTFA biodegradation by the microbial community in activated sludge in polyethylene terephthalate (PET) flasks, which we also determined here showed least adsorption of DTFA. A reduction in DTFA concentration in the medium was accompanied by rapid increases in the concentrations of 2H,2H,8H,8H–perfluorododecanoic acid (2H,2H,8H,8H–PFDoA), 2H,8H,8H-2-perfluorododecenoic acid (2H,8H,8H-2-PFUDoA), and 2H,2H,8H-7-perfluorododecenoic acid and 2H,2H,8H-8-perfluorododecenoic acid (2H,2H,8H-7-PFUDoA/2H,2H,8H-8-PFUDoA), which were in turn followed by an increase in 6H,6H–perfluorodecanoic acid (6H,6H–PFDeA) concentration, and decreases in 2H,2H,8H,8H–PFDoA, 2H,8H,8H-2-PFUDoA, and 2H,2H,8H-7-PFUDoA/2H,2H,8H-8-PFUDoA concentrations. Accumulation of perfluorobutanoic acid (PFBA), a presumed end product of DTFA degradation, was also detected. Our quantitative and time-course study of the concentrations of these compounds reveals main routes of DTFA biodegradation, and the presence of new biodegradation pathways.
Cathepsin B was purified from the crude extract of carp (Cyprinus carpio) hepato-pancreas by the method involving ammonium sulfate fractionation and five sequential chromatographies monitored the activity with Z-Arg-Arg-MCA as a substrate, and the specific activity increased about 11,400 fold with a 2% recovery. Although the homogeneity of the purified cathepsin B was established on Native-PAGE, it migrated as two bands of 29,000 and 25,000 molecular weights by the single and heavy chains on SDS-PAGE, respectively. The monospecific antibody against the homogeneous cathepsin B was purified by the affinity chromatography on cathepsin B-Sepharose 4B, and did not immunologically react with rat cathepsin B, carp cathepsins H and L but only with carp cathepsin B by immunoelectrophoretic blot analysis. As the result of the tissue and liver distributions of cathepsin B, the remarkable immunological reactivities in the extracts of spleen, kidney and hepato-pancreas in carp and those of pacific cod, yellow fin tuna, skip jack tuna and common mackerel in pisces were detected with the anti-carp hepato-pancreas cathepsin B at molecular weight of nearby 29,000 or 25,000. 相似文献
OBJECTIVE: To estimate the alterations of paraoxonase 1 (PON1) and high-density lipoprotein (HDL) in rheumatoid arthritis (RA). DESIGN AND METHODS: We investigated the serum enzyme activity and concentration of PON1 and their relationship with serum lipids, high-density lipoprotein (HDL) parameters, and acute phase reactants of serum amyloid A (SAA) and C-reactive protein (CRP) in patients with RA. RESULTS: Serum paraoxonase (PON) activity was significantly decreased in RA patients (n = 64, 131 +/- 53 micro mol/min/L) compared with healthy subjects (n = 155, 164 +/- 59) despite the absence of any difference in serum lipid levels between the two groups. This decrease of serum PON activity in RA patients was found in every genotype (Q/Q, Q/R, R/R) of PON1 at 192 Q/R. There was a different distribution in PON1 Q/R genotypes between RA patients and healthy subjects, and RA patients exhibited less (44%) positive PON1-Q than did the healthy subjects (66%). In a further investigation of age- and gender-matched subgroups of RA (n = 25) and healthy subjects (n = 25), not only serum PON activity, but also lecithin-cholesterol acyltransferase (LCAT) was found to be significantly decreased in RA patients (125 +/- 61 micro mol/min/L, 63.2 +/- 17.2 nmol/ml/hr/37 degrees C) than in healthy subjects (169 +/- 67, 74.7 +/- 19.5), respectively. PON1 and LCAT as well as HDL constituent apolipoprotein (apo) AI and apo AII, were altered significantly in RA patients. CONCLUSIONS: Acute-phase HDL, which is remodeled structurally and functionally in RA, might be less anti-atherogenic due to the impairment of original HDL function. These alterations of HDL in RA patients may explain in part the reported increase in cardiovascular mortality in patients with RA. 相似文献
Chlorophyll (Chl) a', the C132-epimer of Chl a, is a constituent of the primary electron donor (P700) of Photosystem (PS) I of a thermophilic cyanobacterium Synechococcus (Thermosynechococcus) elongatus, as was recently demonstrated by X-ray crystallography. To determine whether PS I of oxygenic photosynthetic organisms universally contains one molecule of Chl a', pigment compositions of thylakoid membranes and PS I complexes isolated from the cyanobacteria T. elongatus and Synechocystis sp. PCC 6803, the green alga Chlamydomonas reinhardtii, and the green plant spinach, were examined by simultaneous detection of phylloquinone (the secondary electron acceptor of PS I) and Chl a' by reversed-phase HPLC. The results were compared with the Chl a/P700 ratio determined spectrophotometrically. The Chl a'/PS I ratios of thylakoid membranes and PS I were about 1 for all the organisms examined, and one Chl a' molecule was found in PS I even after most of the peripheral subunits were removed. Chl a' showed a characteristic extraction behaviour significantly different from the bulk Chl a in acetone/methanol extraction upon varying the mixing ratio. These findings confirm that a single Chl a' molecule in P700 is the universal feature of PS I of the Chl a-based oxygenic photosynthetic organisms. 相似文献
The reaction catalyzed by crystalline yeast phosphoglyceric acid mutase is inhibited by the substrate (d-2-phosphoglyceric acid). In order to elucidate the mechanism of this substrate inhibition, detailed investigations have been performed. It is proved that the substrate inhibition in this enzyme reaction is caused by the facts that the coenzyme-binding site on the enzyme is covered by the substrate and the combination of the coenzyme with the enzyme is interfered by the substrate. Consequently, it is concluded that the substrate is a competitive inhibitor of the coenzyme. 相似文献
Amphiphysin 1 is involved in clathrin-mediated endocytosis. In this study, we demonstrate that amphiphysin 1 is essential for cellular phagocytosis and that it is critical for actin polymerization. Phagocytosis in Sertoli cells was induced by stimulating phosphatidylserine receptors. This stimulation led to the formation of actin-rich structures, including ruffles, phagocytic cups, and phagosomes, all of which showed an accumulation of amphiphysin 1. Knocking out amphiphysin 1 by RNA interference in the cells resulted in the reduction of ruffle formation, actin polymerization, and phagocytosis. Phagocytosis was also drastically decreased in amph 1 (-/-) Sertoli cells. In addition, phosphatidylinositol-4,5-bisphosphate-induced actin polymerization was decreased in the knockout testis cytosol. The addition of recombinant amphiphysin 1 to the cytosol restored the polymerization process. Ruffle formation in small interfering RNA-treated cells was recovered by the expression of constitutively active Rac1, suggesting that amphiphysin 1 functions upstream of the protein. These findings support that amphiphysin 1 is important in the regulation of actin dynamics and that it is required for phagocytosis. 相似文献