首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5684篇
  免费   391篇
  2022年   30篇
  2021年   57篇
  2020年   20篇
  2019年   35篇
  2018年   51篇
  2017年   61篇
  2016年   75篇
  2015年   133篇
  2014年   144篇
  2013年   378篇
  2012年   272篇
  2011年   277篇
  2010年   161篇
  2009年   172篇
  2008年   251篇
  2007年   231篇
  2006年   284篇
  2005年   262篇
  2004年   311篇
  2003年   250篇
  2002年   253篇
  2001年   204篇
  2000年   187篇
  1999年   184篇
  1998年   78篇
  1997年   82篇
  1996年   53篇
  1995年   60篇
  1994年   67篇
  1993年   61篇
  1992年   112篇
  1991年   112篇
  1990年   100篇
  1989年   87篇
  1988年   79篇
  1987年   65篇
  1986年   93篇
  1985年   80篇
  1984年   83篇
  1983年   64篇
  1982年   54篇
  1981年   44篇
  1980年   33篇
  1979年   55篇
  1978年   44篇
  1977年   41篇
  1976年   31篇
  1974年   30篇
  1973年   30篇
  1970年   22篇
排序方式: 共有6075条查询结果,搜索用时 218 毫秒
991.
Aspergillus nidulans possesses three pmt genes encoding protein O-d-mannosyltransferases (Pmt). Previously, we reported that PmtA, a member of the PMT2 subfamily, is involved in the proper maintenance of fungal morphology and formation of conidia (T. Oka, T. Hamaguchi, Y. Sameshima, M. Goto, and K. Furukawa, Microbiology 150:1973-1982, 2004). In the present paper, we describe the characterization of the pmtA paralogues pmtB and pmtC. PmtB and PmtC were classified as members of the PMT1 and PMT4 subfamilies, respectively. A pmtB disruptant showed wild-type (wt) colony formation at 30°C but slightly repressed growth at 42°C. Conidiation of the pmtB disruptant was reduced to approximately 50% of that of the wt strain; in addition, hyperbranching of hyphae indicated that PmtB is involved in polarity maintenance. A pmtA and pmtB double disruptant was viable but very slow growing, with morphological characteristics that were cumulative with respect to either single disruptant. Of the three single pmt mutants, the pmtC disruptant showed the highest growth repression; the hyphae were swollen and frequently branched, and the ability to form conidia under normal growth conditions was lost. Recovery from the aberrant hyphal structures occurred in the presence of osmotic stabilizer, implying that PmtC is responsible for the maintenance of cell wall integrity. Osmotic stabilization at 42°C further enabled the pmtC disruptant to form conidiophores and conidia, but they were abnormal and much fewer than those of the wt strain. Apart from the different, abnormal phenotypes, the three pmt disruptants exhibited differences in their sensitivities to antifungal reagents, mannosylation activities, and glycoprotein profiles, indicating that PmtA, PmtB, and PmtC perform unique functions during cell growth.Protein glycosylation, which is a major posttranslational modification, plays essential roles in eukaryotic cells from fungi to mammals (19). N-linked oligosaccharides in glycoproteins that share relatively common structures are structurally classified into high-mannose, complex, and hybrid types (3). O-linked oligosaccharides in glycoproteins are diverse with respect to their sugar components and the mode of sugar linkages among the eukaryotic organisms (8, 19). O mannosylation, which is commonly found in the glycoproteins of fungi, has been extensively studied in the budding yeast Saccharomyces cerevisiae (4, 21, 35). The initial reaction of mannose transfer to serine and threonine residues in proteins is catalyzed by protein O-d-mannosyltransferase (Pmt) in the endoplasmic reticulum (ER), where dolichyl phosphate-mannose is required as an immediate sugar donor (4). In the Golgi complex, O mannosylation in S. cerevisiae is linearly elongated by up to five mannose residues by mannosyltransferases (Mnt) that utilize GDP-mannose as the mannosyl donor. At least six Pmt-encoding genes (PMT1 to -6), three α-1,2-Mnt-encoding genes (KRE2, KTR1, and KTR3), and three α-1,3-Mnt-encoding genes (MNN1, MNT2, and MNT3) are known to be involved in O mannosylation in S. cerevisiae (21, 31, 45).The Pmt family of proteins can be classified into the PMT1, PMT2, and PMT4 subfamilies based on phylogeny (6). Proteins of the PMT1 subfamily form a heteromeric complex with proteins belonging to the PMT2 subfamily, and PMT4 subfamily proteins form a homomeric complex (7). Simultaneous disruptions of three different types of PMT genes were lethal (4), suggesting that each class provided a unique function for O mannosylation. Yeasts other than S. cerevisiae, such as Schizosaccharomyces pombe (38, 41), Candida albicans (29), and Cryptococcus neoformans (28), possess three to five pmt genes, which have been characterized. Several studies provide evidence that protein O mannosylation modulates the functions and stability of secretory proteins and thereby affects the growth and morphology of these yeasts. O mannosylation by Pmt2 in S. cerevisiae (ScPmt2) provides protection from ER-associated degradation and also functions as a fail-safe mechanism for ER-associated degradation (11, 13, 23). Likewise, in C. albicans, CaPmt1- and CaPmt4-mediated O mannosylation specifically protects CaSec20 from proteolytic degradation in the ER (40). Cell wall integrity is maintained in S. cerevisiae by increased stabilization and correct localization of the sensor proteins ScWsc and ScMid2 due to O mannosylation by ScPmt2 and ScPmt4 (20). Similarly, the stability and localization to the plasma membrane of axial budding factor ScAxl2/Bud10 is enhanced by ScPmt4-mediated O mannosylation, increasing its activity (32). ScPmt4-mediated O glycosylation also functions as a sorting determinant for cell surface delivery of ScFus1 (30). CaPmt4-mediated O glycosylation is required for environment-specific morphogenetic signaling and for the full virulence of C. albicans (29).With respect to filamentous fungi like Aspergillus that develop hyphae in a highly ordered manner, which then differentiate to form conidiospores, little is known about the function and synthetic pathway of the O-mannose-type oligosaccharides. O-Glycans in glycoproteins of Aspergillus include sugars other than mannose, and their structures have been determined (8). The initial mannosylation catalyzed by Pmts is found in Aspergillus and occurs as in yeasts (8).We characterized the pmtA gene of Aspergillus nidulans (AnpmtA), belonging to the PMT2 subfamily, and found that the mutant exhibited a fragile cell wall phenotype and alteration in the carbohydrate composition, with a reduction in the amount of skeletal polysaccharides in the cell wall (26, 33). Recently, the Afpmt1 gene belonging to the PMT1 family of Aspergillus fumigatus, a human pathogen, was characterized. AfPmt1 is crucial for cell wall integrity and conidium morphology (46).In this study, we characterize the pmtB and pmtC genes of A. nidulans to understand their contribution to the cell morphology of this filamentous fungus. We also demonstrate that the PmtA, PmtB, and PmtC proteins have distinct specificities for protein substrates and function differently during cell growth of filamentous fungi.  相似文献   
992.
In spite of the importance of hyaluronan in host protection against infectious organisms in the alveolar spaces, its role in mycobacterial infection is unknown. In a previous study, we found that mycobacteria interact with hyaluronan on lung epithelial cells. Here, we have analyzed the role of hyaluronan after mycobacterial infection was established and found that pathogenic mycobacteria can grow by utilizing hyaluronan as a carbon source. Both mouse and human possess 3 kinds of hyaluronan synthases (HAS), designated HAS1, HAS2, and HAS3. Utilizing individual HAS-transfected cells, we show that HAS1 and HAS3 but not HAS2 support growth of mycobacteria. We found that the major hyaluronan synthase expressed in the lung is HAS1, and that its expression was increased after infection with Mycobacterium tuberculosis. Histochemical analysis demonstrated that hyaluronan profoundly accumulated in the granulomatous legion of the lungs in M. tuberculosis-infected mice and rhesus monkeys that died from tuberculosis. We detected hyaluronidase activity in the lysate of mycobacteria and showed that it was critical for hyaluronan-dependent extracellular growth. Finally, we showed that L-Ascorbic acid 6-hexadecanoate, a hyaluronidase inhibitor, suppressed growth of mycobacteria in vivo. Taken together, our data show that pathogenic mycobacteria exploit an intrinsic host-protective molecule, hyaluronan, to grow in the respiratory tract and demonstrate the potential usefulness of hyaluronidase inhibitors against mycobacterial diseases.  相似文献   
993.
BACKGROUND : Angiogenesis plays a key role in embryo–fetal development and, based on nonclinical safety data, the majority of vascular endothelial growth factor (VEGF)-targeted antiangiogenic agents used in cancer therapy are not recommended during pregnancy. We investigated the effects of sunitinib (an oral inhibitor of multiple receptor tyrosine kinases [RTKs] including VEGF-receptors) on embryo–fetal development. METHODS : Presumed-pregnant Sprague-Dawley rats and New Zealand White rabbits received repeated daily oral doses of sunitinib (0–30 mg/kg/day), during the major period of organogenesis. Clinical/physical examinations were performed throughout the gestation phase, and blood samples were collected to determine systemic exposure. Necropsy (including uterine examination) was performed on all animals and fetal morphology was examined. RESULTS : The no-observed-adverse-effect level was 1–5 mg/kg/day for maternal toxicity and 3 mg/kg/day for developmental toxicity in rats; 1 and 0.5 mg/kg/day, respectively, in rabbits. Embryo–fetal toxicity included decreases in the number of live fetuses and increases in the numbers of resorptions and post-implantation/complete litter losses; these were observed at doses of ≥5 mg/kg/day in rats and 5 mg/kg/day in rabbits. Malformations included fetal skeletal malformations (generally thoracic/lumbar vertebral alterations) in rats and cleft lip/palate in rabbits. These developmental effects were observed at ∼5.5- (rats) and ∼0.3-times (rabbits) the human systemic exposure at the approved sunitinib dose (50 mg/day). CONCLUSIONS : Similar effects have been reported with the prototype monoclonal antibody bevacizumab. As is typically observed for potent inhibitors of RTKs involved in angiogenesis, sunitinib was associated with embryo–fetal developmental toxicity in rats and rabbits at clinically relevant dose levels. Birth Defects Res (Part B) 33:204–213, 2009. © 2009 Wiley-Liss, Inc.  相似文献   
994.
The effects of invasive species on native species comprise important conservation issues. Determining the mechanisms by which invasives exclude natives is indispensable to efficiently control their impact, but most invasives remain poorly studied. The purpose of this study was to elucidate potentially important but neglected mechanisms, reproductive interference, in wild Taraxacum systems, in which invasive Taraxacum officinale has displaced its native congener T. japonicum in Japan. Hand-pollination of mixed pollen grains significantly reduced the native seed-set compared to conspecific-only pollination. Moreover, natives with a high ratio of invasive pollen on their stigmas suffered severe seed-set reduction, and the proportion of invasive pollen on native stigmas increased as frequencies of the alien neighbor increased. These results, combined with those of previous studies, revealed that depositing invasive pollen on native stigmas contributes to the observed alien-frequency-dependent reduction of native seed-set, and strongly suggest that reproductive interference was the primary cause of displacement in the Taraxacum systems.  相似文献   
995.

Background  

Caste differentiation in social insects is a type of polyphenism that enables division of labor among members of a colony. This elaborate social integration has attracted broad interest, although little is known about its regulatory mechanisms, especially in Isoptera (termites). In this study, we analyzed soldier differentiation in the damp-wood termite Hodotermopsis sjostedti, focusing on a possible effector gene for caste development. The gene for an actin-binding protein, HsjCib, which shows a high level of expression in developing mandibles during soldier differentiation, is characterized in detail.  相似文献   
996.
997.
In the present study, we examined the preimplantation and postimplantation development of rat tetraploid embryos produced by electrofusion of 2-cell-stage embryos. Developmental rate of tetraploid embryos to morula or blastocyst stage was 93% (56/60) and similar to that found in diploid embryos (95%, 55/58). After embryo transfer, rat tetraploid embryos showed implantation and survived until day 8 of pregnancy, however the conceptuses were aberrant on day 9. In mouse, tetraploid embryos have the ability to support the development of blastomeres that cannot develop independently. As shown in the present study, a pair of diploid blastomeres from the rat 8-cell-stage embryo degenerated immediately after implantation. Therefore, we examined whether rat tetraploid embryos have the ability to support the development of 2/8 blastomeres. We produced chimeric rat embryos in which a pair of diploid blastomeres from an 8-cell-stage green fluorescent protein negative (GFP-) embryo was aggregated with three tetraploid blastomeres from 4-cell GFP-positive (GFP+) embryos. The developmental rate of rat 2n(GFP-) <--> 4n(GFP+) embryos to the morula or blastocyst stages was 93% (109/117) and was similar to that found for 2n(GFP-) <--> 2n(GFP+) embryos (100%, 51/51). After embryo transfer, 2n(GFP-) <--> 4n(GFP+) conceptuses were examined on day 14 of pregnancy, the developmental rate to fetus was quite low (4%, 4/109) and they were all aberrant and smaller than 2n(GFP-) <--> 2n(GFP+) conceptuses, whereas immunohistochemical analysis showed no staining for GFP in fetuses. Our results suggest that rat tetraploid embryos are able to prolong the development of diploid blastomeres that cannot develop independently, although postimplantation development was incomplete.  相似文献   
998.
FTY720 (1) is a novel immunosuppressant (immunomodulator), derived from ISP-I (2: myriocin and thermozymocidin). To clarify the pharmacokinetic properties of 1, antibodies against 1 were prepared and a competitive enzyme immunoassay (EIA) was developed. Two kinds of haptens, 3 and 4, for 1 were synthesized and coupled to ovalbumin (OVA). Rabbits were immunized with 3-OVA or 4-OVA, and corresponding antibodies were obtained. Both antibodies recognized the 2-amino-2-(2-phenylethyl)propane-1,3-diol moiety in 1. Using the anti-3-OVA antibody, a competitive EIA for 1 was developed and evaluated. The range of quantification by the EIA was 0.06-10 ng/mL. The application of the EIA has enabled us to measure the FTY720 concentration in serum after oral administration of 1 (1mg/kg) to rats.  相似文献   
999.
A new methodology for quantitative analysis of proteins is described, applying stable-isotope labeling by small organic molecules combined with one- or two-dimensional electrophoresis and MALDI-TOF-MS, also allowing concurrent protein identification by peptide mass fingerprinting. Our method eliminates fundamental problems in other existing isotope-tagging methods requiring liquid chromatography and MS/MS, such as isotope effects, fragmentation, and solubility. It is also anticipated to be more practical and accessible than those LC-dependent methods.  相似文献   
1000.
To quantitatively estimate the inhibitory effect of each substrate-binding subsite of cathepsin B (CB), a series of epoxysuccinyl derivatives with different functional groups bound to both carbon atoms of the epoxy ring were synthesized, and the relationship between their inhibitory activities and binding modes at CB subsites was evaluated by the X-ray crystal structure analyses of eight complexes. With the common reaction in which the epoxy ring of inhibitor was opened to form a covalent bond with the SgammaH group of the active center Cys29, the observed binding modes of the substituents of inhibitors at the binding subsites of CB enabled the quantitative assessment of the inhibitory effect of each subsite. Although the single blockage of S1' or S2' subsite exerts only the inhibitory effect of IC50 = approximately 24 microM (k2 = approximately 1250 M(-1) s(-1)) or approximately 15 microM (k2 = approximately 1800 M(-1) s(-1)), respectively, the synchronous block of both subsites leads to IC50 = approximately 23 nM (k2 = 153,000 - 185,000 M(-1) s(-1)), under the condition that (i) the inhibitor possesses a P1' hydrophobic residue such as Ile and a P2' hydrophobic residue such as Ala, Ile or Pro, and (ii) the C-terminal carboxyl group of a P2' residue is able to form paired hydrogen bonds with the imidazole NH of His110 and the imidazole N of His111 of CB. The inhibitor of a Pn' > or = 3' substituent was not potentiated by collision with the occluding loop. On the other hand, it was suggested that the inhibitory effects of Sn subsites are independent of those of Sn' subsites, and the simultaneous blockage of the funnel-like arrangement of S2 and S3 subsites leads to the inhibition of IC50 = approximately 40 nM (k2 = approximately 66,600 M(-1) s(-1)) regardless of the lack of Pn' substituents. Here we present a systematic X-ray structure-based evaluation of structure-inhibitory activity relationship of each binding subsite of CB, and the results provide the structural basis for designing a more potent CB-specific inhibitor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号