首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   925篇
  免费   57篇
  982篇
  2022年   4篇
  2021年   11篇
  2019年   7篇
  2018年   9篇
  2016年   11篇
  2015年   17篇
  2014年   28篇
  2013年   32篇
  2012年   41篇
  2011年   57篇
  2010年   21篇
  2009年   23篇
  2008年   41篇
  2007年   36篇
  2006年   34篇
  2005年   44篇
  2004年   41篇
  2003年   43篇
  2002年   36篇
  2001年   41篇
  2000年   42篇
  1999年   22篇
  1998年   16篇
  1997年   8篇
  1996年   9篇
  1995年   13篇
  1994年   10篇
  1993年   13篇
  1992年   19篇
  1991年   22篇
  1990年   23篇
  1989年   19篇
  1988年   18篇
  1987年   20篇
  1986年   13篇
  1985年   13篇
  1984年   7篇
  1983年   13篇
  1982年   13篇
  1981年   10篇
  1980年   8篇
  1979年   6篇
  1978年   8篇
  1975年   5篇
  1974年   7篇
  1973年   6篇
  1971年   6篇
  1967年   4篇
  1966年   5篇
  1965年   3篇
排序方式: 共有982条查询结果,搜索用时 15 毫秒
171.
Aquatic organisms such as cichlids, coelacanths, seals, and cetaceans are active in UV–blue color environments, but many of them mysteriously lost their abilities to detect these colors. The loss of these functions is a consequence of the pseudogenization of their short wavelength-sensitive (SWS1) opsin genes without gene duplication. We show that the SWS1 gene (BdenS1ψ) of the deep-sea fish, pearleye (Benthalbella dentata), became a pseudogene in a similar fashion about 130 million years ago (Mya) yet it is still transcribed. The rates of nucleotide substitution (~ 1.4 × 10− 9/site/year) of the pseudogenes of these aquatic species as well as some prosimian and bat species are much smaller than the previous estimates for the globin and immunoglobulin pseudogenes.  相似文献   
172.
Organic solar cells (OSCs) are promising low‐cost devices for generating electricity. In addition to fill factor, the short circuit current density (JSC) and the open circuit voltage (VOC) are two key factors that have critical influence on the device performance. The energy levels of the donor and acceptor materials are crucial for achieving a high JSC and VOC. However, the interfacial structures between the organic materials substantially affect the JSC and VOC through the energy of the charge transfer (CT) states and the charge separation and recombination reaction kinetics. Here, it is reported that separating the donor and acceptor layer in bilayer OSCs with a thin insulating layer increases the energy of the CT state by weakening the Coulomb interaction at the interface and this also suppresses photoinduced CT and recombination. Although these effects usually increase VOC and decrease JSC, the trade‐off is avoided by doping the insulating layer with a dye to utilize the energy transfer process. The increase in VOC without the reduction in JSC enhances the conversion efficiency of the OSCs by 30%.  相似文献   
173.
Anchoring microtubules to the centrosome is critical for cell geometry and polarity, yet the molecular mechanism remains unknown. Here we show that the conserved human Msd1/SSX2IP is required for microtubule anchoring. hMsd1/SSX2IP is delivered to the centrosome in a centriolar satellite‐dependent manner and binds the microtubule‐nucleator γ‐tubulin complex. hMsd1/SSX2IP depletion leads to disorganised interphase microtubules and misoriented mitotic spindles with reduced length and intensity. Furthermore, hMsd1/SSX2IP is essential for ciliogenesis, and during zebrafish embryogenesis, knockdown of its orthologue results in ciliary defects and disturbs left‐right asymmetry. We propose that the Msd1 family comprises conserved microtubule‐anchoring proteins.  相似文献   
174.
175.
The replication fork temporarily stalls when encountering an obstacle on the DNA, and replication resumes after the barrier is removed. Simultaneously, activation of the replication checkpoint delays the progression of S phase and inhibits late origin firing. Camptothecin (CPT), a topoisomerase I (Top1) inhibitor, acts as a DNA replication barrier by inducing the covalent retention of Top1 on DNA. The Timeless-Tipin complex, a component of the replication fork machinery, plays a role in replication checkpoint activation and stabilization of the replication fork. However, the role of the Timeless-Tipin complex in overcoming the CPT-induced replication block remains elusive. Here, we generated viable TIPIN gene knock-out (KO) DT40 cells showing delayed S phase progression and increased cell death. TIPIN KO cells were hypersensitive to CPT. However, homologous recombination and replication checkpoint were activated normally, whereas DNA synthesis activity was markedly decreased in CPT-treated TIPIN KO cells. Proteasome-dependent degradation of chromatin-bound Top1 was induced in TIPIN KO cells upon CPT treatment, and pretreatment with aphidicolin, a DNA polymerase inhibitor, suppressed both CPT sensitivity and Top1 degradation. Taken together, our data indicate that replication forks formed without Tipin may collide at a high rate with Top1 retained on DNA by CPT treatment, leading to CPT hypersensitivity and Top1 degradation in TIPIN KO cells.  相似文献   
176.
Zoledronic acid (ZOL), a nitrogen-containing bisphosphonate, produced anti-tumor effects through apoptosis induction or S-phase arrest depending on human mesothelioma cells tested. An addition of isoprenoid, geranylgeraniol but not farnesol, negated these ZOL-induced effects, indicating that the ZOL-mediated effects were attributable to depletion of geranylgeranyl pyrophosphates which were substrates for prenylation processes of small guanine-nucleotide-binding regulatory proteins (small G proteins). ZOL-treated cells decreased a ratio of membrane to cytoplasmic fractions in RhoA, Cdc42 and Rab6 but less significantly Rac1 proteins, indicating that these proteins were possible targets for ZOL-induced actions. We further analyzed which small G proteins were responsible for the three ZOL-induced effects, caspase-mediated apoptosis, S-phase arrest and morphological changes, using inhibitors for respective small G proteins and siRNA for Cdc42. ZOL-induced apoptosis is due to insufficient prenylation of Rab proteins because an inhibitor of geranlygeranyl transferase II that was specific for Rab family proteins prenylation, but not others inhibitors, activated the same apoptotic pathways that ZOL did. ZOL suppressed an endogenous topoisomerase II activity, which was associated with apoptosis and S-phase arrest in respective cells because we detected the same cell cycle changes in etoposide-treated cells. Inhibitors for geranlygeranyl transferase I and for RhoA produced morphological changes and disrupted actin fiber structures, both of which were similar to those by ZOL treatments. These data demonstrated that anti-tumor effects by ZOL were attributable to inhibited functions of respective small G proteins and topoisomerase II activity, and suggested that cellular factors were involved in the differential cell cycle changes.Bisphosphonates (BPs), synthetic analogues of pyrophosphates, are clinically in use for diseases with excessive bone absorption such as osteoporosis and malignancy-associated hypercalcemia. BPs administered in vivo are accumulated in the bone matrix and inhibit activities of osteoclasts.1 The first generation of BPs, without nitrogen in the structure, is converted into cytotoxic non-hydrolyzable ATP analogues and achieves cytotoxic effects thorough decreased mitochondrial membrane potentials.2,3 The second and the third generations, containing nitrogen, inhibit farnesyl pyrophosphate synthetase, a key enzyme in the mevalonate pathways, and deplete isoprenoid pools, which subsequently results in decreased prenylation of small guanine-nucleotide-binding regulatory proteins (small G proteins) (Supplementary Figure S1).4Isoprenoid lipids, farnesyl pyrophosphate and geranylgeranyl pyrophosphate, are substrates for prenylation processes that mediate farnesylation and geranylgeranylation of small G proteins, respectively.5,6 Ras family proteins are either farnesylated by farnsyl transferase or geranylgeranylated by geranylgeranyl transferase I. In contrast, the majority of Rho family proteins and Rab family proteins are geranylgeranylated by geranylgeranyl transferase I and II, respectively. These lipid modifications are essential for most of small G proteins to bind to cytoplasmic and organelle membranes where prenylated small G proteins become functional, whereas unprenylated small G proteins remain in the cytoplasm and non-functional.5The nitrogen-containing BPs (N-BPs) also induce cytotoxicity to osteoclasts, which is favorable for enhanced bone mineralization, and recent studies also showed that N-BPs had cytotoxic activities on tumors such as breast and prostate cancer.7,8 These cytotoxic actions are attributable to a number of mechanisms including apoptosis induction and anti-angiogenesis,9,10 but it is not well investigated as to which small G proteins produce the cytotoxic effects.We recently showed that zoledronic acid (ZOL), which is one of the N-BPs to inhibit farnesyl pyrophosphate synthetase, produced cytotoxic activities to human mesothelioma.11 ZOL treatments induced apoptotic cell death or S-phase arrest in cell cycle, and moreover caused morphological changes from fibroblast-like to spherical shapes. In the present study, we examined what kinds of small G proteins are responsible to these ZOL-mediated effects using inhibitors or small interfering RNA (siRNA) for the respective small G proteins and for prenylating enzymes.  相似文献   
177.
Cationization of a protein is considered to be a powerful strategy for internalizing a functional protein into cells. Cationized proteins appear to adsorb to the cell surface by electrostatic interactions, then enter the cell in a receptor- and transporter-independent fashion. Thus, in principle, all cell types appear to take up cationized proteins. Since ribonucleases (RNases) have a latent cytotoxic potential, cationized RNases could be useful cancer chemotherapeutics. In this study, we investigated the effect of the degree of cationization on the cytotoxicity of RNase A by modifying carboxyl groups with ethylenediamine. We found that there is an optimum degree of modification for cytotoxicity, in which 5 to 7 out of 11 carboxyl groups in RNase A are modified, toward MCF-7 and 3T3-SV-40 cells. More interestingly, the cytotoxicity of cationized RNase As correlates well with the value of [RNase activity] x [estimated concentration of RNase free from RNase inhibitor], mimicking the practical enzymatic activity of cationized RNase As in cytosol. The results indicate that cationization of a protein to an optimum level is important for maintaining protein function in the cytosol. Sophisticated protein cationization techniques will help to advance protein transduction technology.  相似文献   
178.
Experiments were carried out in vitro to investigate whether the sera of several animals as well as albumins and peptides might act as attractants for larvae of Strongyloides ratti. Samples of sera from several mammal species were dialysed and the aliquots were further centrifuged using ultrafiltration cartridges to remove any remaining small molecules. Additional test substances included commercially obtained ovalbumin, rat and bovine serum albumins, polypeptides such as peptone, tryptone and tryptose, amino nitrogens, monosaccharides, and reduced glutathione (triaminopeptide). Larvae were strongly attracted to the dialysed mammalian sera, which mainly consisted of serum albumin and globulins. Ov- and serum albumins, and polypeptides also acted as attractants. On the other hand, reduced glutathione, 16 kinds of amino acids and four kinds of monosaccharides did not attract this nematode.  相似文献   
179.
Laterality defects such as situs inversus are not uncommonly encountered in humans, either in isolation or as part of another syndrome, but can have devastating developmental consequences. The events that break symmetry during early embryogenesis are highly conserved amongst vertebrates and involve the establishment of unidirectional flow by cilia within an organising centre such as the node in mammals or Kupffer's vesicle (KV) in teleosts. Disruption of this flow can lead to the failure to successfully establish left-right asymmetry. The correct apical-posterior cellular position of each node/KV cilium is critical for its optimal radial movement which serves to sweep fluid (and morphogens) in the same direction as its neighbours. Planar cell polarity (PCP) is an important conserved process that governs ciliary position and posterior tilt; however the underlying mechanism by which this occurs remains unclear. Here we show that Bbs8, a ciliary/basal body protein important for intraciliary/flagellar transport and the core PCP protein Vangl2 interact and are required for establishment and maintenance of left-right asymmetry during early embryogenesis in zebrafish. We discovered that loss of bbs8 and vangl2 results in laterality defects due to cilia disruption at the KV. We showed that perturbation of cell polarity following abrogation of vangl2 causes nuclear mislocalisation, implying defective centrosome/basal body migration and apical docking. Moreover, upon loss of bbs8 and vangl2, we observed defective actin organisation. These data suggest that bbs8 and vangl2 act synergistically on cell polarization to establish and maintain the appropriate length and number of cilia in the KV and thereby facilitate correct LR asymmetry.  相似文献   
180.
We have amplified two cDNAs, coding for creatine kinases (CKs), from the skeletal muscle of sperm whale Physeter macrocephalus by PCR, and cloned these cDNAs into pMAL plasmid. These are the first CK cDNA and deduced amino acid sequences from cetaceans to be reported. One of the two amino acid sequences is a cytoplasmic, muscle-type isoform (MCK), while the other was identified as a sarcomeric, mitochondrial isoform (sMiCK) that included a mitochondrial targeting peptide. The amino acid sequences of sperm whale MCK and sMiCK showed 94–96% sequence identity with corresponding isoforms of mammalian CKs, and all of the key residues necessary for CK function were conserved. The phylogenetic analyses of vertebrate CKs with three independent methods (neighbor-joining, maximum-likelihood and Bayes) supported the clustering of sperm whale MCK with Bos and Sus MCKs, in agreement with the contemporary view that these groups are closely related. Sperm whale MCK and sMiCK were expressed in Escherichia coli as a fusion protein with maltose-binding protein, and the kinetic constants (K m, K d and k cat) were determined for the forward reaction. Comparison of kinetic constants with those of human and mouse CKs indicated that sperm whale MCK has a comparable affinity for creatine (K mCr = 9.38 mM) to that of human MCK, and the sMiCK has two times higher affinity for creatine than the human enzyme. Both the MCK and sMiCK of sperm whale display a synergistic substrate binding (K d /K m = 3.1–7.8) like those of other mammalian CKs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号