首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4510篇
  免费   458篇
  国内免费   18篇
  4986篇
  2022年   40篇
  2021年   81篇
  2020年   25篇
  2019年   45篇
  2018年   76篇
  2017年   51篇
  2016年   96篇
  2015年   231篇
  2014年   254篇
  2013年   271篇
  2012年   346篇
  2011年   346篇
  2010年   216篇
  2009年   162篇
  2008年   221篇
  2007年   208篇
  2006年   220篇
  2005年   187篇
  2004年   181篇
  2003年   135篇
  2002年   117篇
  2001年   129篇
  2000年   101篇
  1999年   59篇
  1998年   44篇
  1997年   36篇
  1996年   43篇
  1995年   25篇
  1994年   40篇
  1993年   32篇
  1992年   67篇
  1991年   50篇
  1990年   57篇
  1989年   62篇
  1988年   38篇
  1987年   51篇
  1986年   32篇
  1985年   45篇
  1984年   38篇
  1983年   33篇
  1982年   49篇
  1980年   20篇
  1979年   42篇
  1978年   25篇
  1977年   33篇
  1976年   33篇
  1975年   40篇
  1974年   36篇
  1973年   40篇
  1971年   24篇
排序方式: 共有4986条查询结果,搜索用时 15 毫秒
41.
42.
43.
The acoustic startle response is an evolutionarily conserved avoidance behavior. Disruptions in startle behavior, particularly startle magnitude, are a hallmark of several human neurological disorders. While the neural circuitry underlying startle behavior has been studied extensively, the repertoire of genes and genetic pathways that regulate this locomotor behavior has not been explored using an unbiased genetic approach. To identify such genes, we took advantage of the stereotypic startle behavior in zebrafish larvae and performed a forward genetic screen coupled with whole genome analysis. We uncovered mutations in eight genes critical for startle behavior, including two genes encoding proteins associated with human neurological disorders, Dolichol kinase (Dolk), a broadly expressed regulator of the glycoprotein biosynthesis pathway, and the potassium Shaker-like channel subunit Kv1.1. We demonstrate that Kv1.1 and Dolk play critical roles in the spinal cord to regulate movement magnitude during the startle response and spontaneous swim movements. Moreover, we show that Kv1.1 protein is mislocalized in dolk mutants, suggesting they act in a common genetic pathway. Combined, our results identify a diverse set of eight genes, all associated with human disorders, that regulate zebrafish startle behavior and reveal a previously unappreciated role for Dolk and Kv1.1 in regulating movement magnitude via a common genetic pathway.  相似文献   
44.
Neurotrophins, including the brain-derived neurotrophic factor (BDNF), are essential for regulating neuronal differentiation in developing brains. BDNF and its receptor tyrosine kinase receptor B (TrkB) are involved in neuronal signaling, survival and plasticity. Cyclosporine A (CsA) is a potent immunosuppressive agent which prevents allograft rejection in organ transplantation and various immunological diseases. We investigated whether chronic administration of CsA decreases BDNF gene expression in rats, and the influence of CsA on mRNA levels of TrkB receptors was also examined. For 30 days of CsA (10 mg/kg/day) administration, the expression of BDNF and TrkB mRNA was significantly decreased in the hippocampus and midbrain, but there was no significant difference in the cortex. CsA (0, 1, 5 10, 15 ug/ml) down-regulated BDNF and TrkB gene expression through cultured SH-SY5Y cells, as did all-trans retinoic acid (ATRA), and there was no effect on cell viability. These experimental results indicate that suppression of the BDNF and TrkB mRNA, protein level of BDNF expression in the hippocampus and midbrain may be related to altered behavior observed following chronic administration of CsA. A common mechanism of adverse effects of CsA induced depressive symptoms may involve neurotoxicity mediated by down-regulation of brain BDNF and TrkB.  相似文献   
45.
We have demonstrated previously that the core protein of hepatitis C virus (HCV) exhibits suppression activity on gene expression and replication of hepatitis B virus (HBV). Here we further elucidated the suppression mechanism of HCV core protein. We demonstrated that HCV core protein retained the inhibitory effect on HBV gene expression and replication when expressed as part of the full length of HCV polyprotein. Based on the substitution mutational analysis, our results suggested that mutation introduced into the bipartite nuclear localization signal of the HCV core protein resulted in the cytoplasmic localization of core protein but did not affect its suppression ability on HBV gene expression. Mutational studies also indicated that almost all dibasic residue mutations within the N-terminal 101-amino acid segment of the HCV core protein (except Arg(39)-Arg(40)) impaired the suppression activity on HBV replication but not HBV gene expression. The integrity of Arg residues at positions 101, 113, 114, and 115 was found to be essential for both suppressive effects, whereas the Arg residue at position 104 was important only in the suppression of HBV gene expression. Moreover, our results indicated that the suppression on HBV gene expression was mediated through the direct interaction of HCV core protein with the trans-activator HBx protein, whereas the suppression of HBV replication involved the complex formation between HBV polymerase (pol) and the HCV core protein, resulting in the structural incompetence for the HBV pol to bind the package signal and consequently abolished the formation of the HBV virion. Altogether, this study suggests that these two suppression effects on HBV elicited by the HCV core protein likely depend on different structural context but not on nuclear localization of the core protein, and the two effects can be decoupled as revealed by its differential targets (HBx or HBV pol) on these two processes of the HBV life cycle.  相似文献   
46.
Epidemiologic studies reported that the prevalence of hereditary non-polyposis colon cancer (HNPCC) in male is about 1.5-fold higher than that in female. Decreases in circulatory estradiol (E2) have been reported to downregulate the expression of E2 receptor (ER) and significantly increase the risk of colorectal cancer. Patients that received E2 replacement therapy were found to have a reduction in the incidence of colon adenoma and carcinoma. Furthermore, significant decreases in the expression of ER have been found in colorectal cancer specimens. These data strongly suggest the protective roles of E2 and ER against colorectal cancer. However, the mechanisms remain unexplored. LoVo cells were transient transfected to overexpress ER-beta, DNA fragmentation and caspase activity assay were performed to evaluate apoptotic effects. Western blotting was used to evaluate protein levels, and luciferase activity assay to measure the TNF-alpha promoter activity. Our data clearly demonstrated that E2 and ER-beta alone could upregulate p21 and p27 proteins, which further activate caspase-8 and caspase-9 to induce apoptosis in LoVo cell, and the ER-beta. effects were enhanced by E2. However, overexpressed ER-beta did not influence the expression and promoter activity of TNF-alpha. In addition, E2 and overexpressed ER-beta downregulated the beta-catenin proteins which cause the downregulation of its target genes, cyclin D1 and Rb, to inhibit the cell cycle and cell proliferation. The results indicate that overexpressed ER-beta may induce LoVo cell apoptosis and anti-proliferation by increasing p53 signaling in a ligand-dependent manner, and without hTNF-alpha involvement. Efforts aiming at enhancing ER-beta expression and/or activity may prove to be an attractive alternative therapy against colorectal cancer.  相似文献   
47.
48.
Chao LK  Hua KF  Hsu HY  Su YC  Chang ST 《Bioresource technology》2006,97(18):2462-2465
Alcoholic extracts from bark of Calocedrus macrolepis var. formosana Florin (Cupressaceae) were extracted successively using n-hexane, dichloromethane, ethyl acetate, 1-butanol and water, which gave 34.8%, 34.1%, 24.1%, 3.3% and 3.7% soluble fractions, respectively. Antioxidation activity of these fractions by DPPH assay and dissimilar IC50 values of the DPPH showed that ethyl acetate fraction had the best antioxidant activity; its IC50 was 2.6 microg/ml. Analyses of the composition and anti-inflammatory activity of the subfractions from n-C6H14 fraction showed that the T3 and H5ppt had the best anti-inflammatory activity in LPS-stimulated murine macrophage J774A. 1 cells, respectively; moreover, their major constituent was sugiol (T3 37.1%, H5ppt 81.1%), which at dosages of 10 microg/ml inhibited proIL-1beta protein production completely. Furthermore, the T1 also exhibited anti-inflammatory activity, and its major constituent was ferruginol (above 85.6%).  相似文献   
49.

Background

Use of the chemotherapeutic drug doxorubicin (DOX) is associated with serious cardiotoxicity, as it increases levels of reactive oxygen species (ROS). N-3 polyunsaturated fatty acid dietary supplements can be of benefit to patients undergoing cancer therapy. The aims of this study were to determine whether DOX-induced cardiotoxicity is related to mitochondrial uncoupling proteins and whether eicosapentaenoic acid (EPA, C20:5 n-3) or docosahexaenoic acid (DHA, C22:6 n-3) affects DOX-induced cardiomyocyte toxicity.

Results

Treatment of H9C2 cells with DOX resulted in decreased cell viability and UCP2 expression. Treatment with 100 μM EPA or 50 μM DHA for 24 h resulted in a maximal mitochondria concentration of these fatty acids and increased UCP2 expression. Pretreatment with 100 μM EPA or 50 μM DHA prevented the DOX-induced decrease in UCP2 mRNA and protein levels, but these effects were not seen with EPA or DHA and DOX cotreatment. In addition, the DOX-induced increase in ROS production and subsequent mitochondrial membrane potential change (∆ψ) were significantly attenuated by pretreatment with EPA or DHA.

Conclusion

EPA or DHA pre-treatment inhibits the DOX-induced decrease in UCP2 expression, increase in ROS production, and subsequent mitochondrial membrane potential change that contribute to the cardiotoxicity of DOX.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-014-0101-3) contains supplementary material, which is available to authorized users.  相似文献   
50.
The present resolution (75-100 A) of the conventional scanning electron microscope (SEM) and its ability to image the surfaces of large numbers of whole cells in situ permit the approach of problems such as viral and cell surface antigen localization by immunological labeling with visual markers. Identification of virus and cell surface antigens in situ has been accomplished in indirect reactions by unconjugated markers. Hemocyanin (Hcy) from whelk, Busycon canniculatum, has been developed as an immunospecific marker for virion and cell surface labeling in the electron microscope. Its size (30 x 50 nm) and distinct cylindrical shape permit easy visualization in the SEM and the transmission electron microscope (TEM). The Hcy method involves the preparation of antisera to Hcy in appropriate hosts for use in an unlabeled antibody macromolecule procedure based exclusively on antigen-antibody affinity to couple the macromolecule to the antigen site. Further correlative data from fluorescence microscopy can be obtained from similarly labeled samples by binding fluorescein to the bridging antibodies used in the Hcy technique. The usefulness of the Hcy marker system was demonstrated by employing highly specific antisera to the major envelope and cell surface glycoprotein (gp70) of Rauscher murine leukemia virus (R-MuLV), a type C retrovirus. The antiserum was shown to bind to the virion and cell surfaces of virus-infected cells in the homologous virus-infected cell system. It also demonstrated the expression of R-MuLV gp70-related antigens on a murine cell line Mm5mt/c1 which produces mouse mammary tumor virus (MuMTV), a type B retrovirus. Furthermore, when used in the Hcy marker system the anti-gp70 serum was able to distinguish type B from type C budding virus on the same cell. Methods for the preparation of immunoreagents and labeling of cells are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号