全文获取类型
收费全文 | 109913篇 |
免费 | 13288篇 |
国内免费 | 393篇 |
专业分类
123594篇 |
出版年
2021年 | 742篇 |
2018年 | 990篇 |
2017年 | 964篇 |
2016年 | 1257篇 |
2015年 | 1550篇 |
2014年 | 1942篇 |
2013年 | 2461篇 |
2012年 | 2859篇 |
2011年 | 2809篇 |
2010年 | 1884篇 |
2009年 | 1845篇 |
2008年 | 2357篇 |
2007年 | 2343篇 |
2006年 | 2332篇 |
2005年 | 2131篇 |
2004年 | 2068篇 |
2003年 | 2103篇 |
2002年 | 2073篇 |
2001年 | 9638篇 |
2000年 | 9506篇 |
1999年 | 7178篇 |
1998年 | 1613篇 |
1997年 | 1792篇 |
1996年 | 1580篇 |
1995年 | 1407篇 |
1994年 | 1308篇 |
1993年 | 1248篇 |
1992年 | 4765篇 |
1991年 | 4484篇 |
1990年 | 3963篇 |
1989年 | 3978篇 |
1988年 | 3577篇 |
1987年 | 3065篇 |
1986年 | 2752篇 |
1985年 | 2650篇 |
1984年 | 1956篇 |
1983年 | 1714篇 |
1982年 | 1222篇 |
1981年 | 978篇 |
1980年 | 907篇 |
1979年 | 1739篇 |
1978年 | 1346篇 |
1977年 | 1192篇 |
1976年 | 1016篇 |
1975年 | 1124篇 |
1974年 | 1140篇 |
1973年 | 1134篇 |
1972年 | 1009篇 |
1971年 | 930篇 |
1970年 | 796篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Thomas T.Y. Wang Alison J. Edwards Beverly A. Clevidence 《The Journal of nutritional biochemistry》2013,24(8):1538-1546
The mechanisms as well the genetics underlying the bioavailability and metabolism of carotenoids in humans remain unclear. To begin to address these questions, we used cluster analysis to examine individual temporal responses of plasma carotenoids from a controlled-diet study of subjects who consumed carotenoid-rich beverages. Treatments, given daily for 3 weeks, were watermelon juice at two levels (20-mg lycopene, 2.5-mg β-carotene, n=23 and 40-mg lycopene, 5-mg β-carotene, n=12) and tomato juice (18-mg lycopene, 0.6-mg β-carotene, n=10). Cluster analysis revealed distinct groups of subjects differing in the temporal response of plasma carotenoids and provided the basis for classifying subjects as strong responders or weak responders for β-carotene, lycopene, phytoene and phytofluene. Individuals who were strong or weak responders for one carotenoid were not necessarily strong or weak responders for another carotenoid. Furthermore, individual responsiveness was associated with genetic variants of the carotenoid metabolizing enzyme β-carotene 15,15'-monooxygenase 1. These results support the concept that individuals absorb or metabolize carotenoids differently across time and suggest that bioavailability of carotenoids may involve specific genetic variants of β-carotene 15,15'-monooxygenase 1. 相似文献
62.
X Zheng J Naiditch M Czurylo C Jie T Lautz S Clark N Jafari Y Qiu F Chu M B Madonna 《Cell death & disease》2013,4(7):e740
Numerous studies have confirmed that cancer stem cells (CSCs) are more resistant to chemotherapy; however, there is a paucity of data exploring the effect of long-term drug treatment on the CSC sub-population. The purpose of this study was to investigate whether long-term doxorubicin treatment could expand the neuroblastoma cells with CSC characteristics and histone acetylation could affect stemness gene expression during the development of drug resistance. Using n-myc amplified SK-N-Be(2)C and non-n-myc amplified SK-N-SH human neuroblastoma cells, our laboratory generated doxorubicin-resistant cell lines in parallel over 1 year; one cell line intermittently treated with the histone deacetylase inhibitor (HDACi) vorinostat and the other without exposure to HDACi. Cells'' sensitivity to chemotherapeutic drugs, the ability to form tumorspheres, and capacity for in vitro invasion were examined. Cell-surface markers and side populations (SPs) were analyzed using flow cytometry. Differentially expressed stemness genes were identified through whole genome analysis and confirmed with real-time PCR. Our results indicated that vorinostat increased the sensitivity of only SK-N-Be(2)C-resistant cells to chemotherapy, made cells lose the ability to form tumorspheres, and reduced in vitro invasion and the SP percentage. CD133 was not enriched in doxorubicin-resistant or vorinostat-treated doxorubicin-resistant cells. Nine stemness-linked genes (ABCB1, ABCC4, LMO2, SOX2, ERCC5, S100A10, IGFBP3, TCF3, and VIM) were downregulated in vorinostat-treated doxorubicin-resistant SK-N-Be(2)C cells relative to doxorubicin-resistant cells. A sub-population of cells with CSC characteristics is enriched during prolonged drug selection of n-myc amplified SK-N-Be(2)C neuroblastoma cells. Vorinostat treatment affects the reversal of drug resistance in SK-N-Be(2)C cells and may be associated with downregulation of stemness gene expression. This work may be valuable for clinicians to design treatment protocols specific for different neuroblastoma patients. 相似文献
63.
64.
Y Yuan A J Tang A B Castoreno S-Y Kuo Q Wang P Kuballa R Xavier A F Shamji S L Schreiber B K Wagner 《Cell death & disease》2013,4(6):e690
The histone methyltransferase G9a is overexpressed in a variety of cancer types, including pancreatic adenocarcinoma, and promotes tumor invasiveness and metastasis. We recently reported the discovery of BRD4770, a small-molecule inhibitor of G9a that induces senescence in PANC-1 cells. We observed that the cytotoxic effects of BRD4770 were dependent on genetic background, with cell lines lacking functional p53 being relatively resistant to compound treatment. To understand the mechanism of genetic selectivity, we used two complementary screening approaches to identify enhancers of BRD4770. The natural product and putative BH3 mimetic gossypol enhanced the cytotoxicity of BRD4770 in a synergistic manner in p53-mutant PANC-1 cells but not in immortalized non-tumorigenic pancreatic cells. The combination of gossypol and BRD4770 increased LC3-II levels and the autophagosome number in PANC-1 cells, and the compound combination appears to act in a BNIP3 (B-cell lymphoma 2 19-kDa interacting protein)-dependent manner, suggesting that these compounds act together to induce autophagy-related cell death in pancreatic cancer cells. 相似文献
65.
S. T. Williams L. M. Smith D. G. Herbert B. A. Marshall A. Warén S. Kiel P. Dyal K. Linse C. Vilvens Y. Kano 《Ecology and evolution》2013,3(4):887-917
Recent expeditions have revealed high levels of biodiversity in the tropical deep‐sea, yet little is known about the age or origin of this biodiversity, and large‐scale molecular studies are still few in number. In this study, we had access to the largest number of solariellid gastropods ever collected for molecular studies, including many rare and unusual taxa. We used a Bayesian chronogram of these deep‐sea gastropods (1) to test the hypothesis that deep‐water communities arose onshore, (2) to determine whether Antarctica acted as a source of diversity for deep‐water communities elsewhere and (3) to determine how factors like global climate change have affected evolution on the continental slope. We show that although fossil data suggest that solariellid gastropods likely arose in a shallow, tropical environment, interpretation of the molecular data is equivocal with respect to the origin of the group. On the other hand, the molecular data clearly show that Antarctic species sampled represent a recent invasion, rather than a relictual ancestral lineage. We also show that an abrupt period of global warming during the Palaeocene Eocene Thermal Maximum (PETM) leaves no molecular record of change in diversification rate in solariellids and that the group radiated before the PETM. Conversely, there is a substantial, although not significant increase in the rate of diversification of a major clade approximately 33.7 Mya, coinciding with a period of global cooling at the Eocene–Oligocene transition. Increased nutrients made available by contemporaneous changes to erosion, ocean circulation, tectonic events and upwelling may explain increased diversification, suggesting that food availability may have been a factor limiting exploitation of deep‐sea habitats. Tectonic events that shaped diversification in reef‐associated taxa and deep‐water squat lobsters in central Indo‐West Pacific were also probably important in the evolution of solariellids during the Oligo‐Miocene. 相似文献
66.
Yuichi Kano Yôichi Kawaguchi Tomomi Yamashita Tsuneo Sekijima Yukihiro Shimatani Yoshinori Taniguchi 《Landscape and Ecological Engineering》2013,9(2):281-287
We validated the effects of a passive integrated transponder (PIT) tagging process on the oriental weather loach Misgurnus anguillicaudatus. Laboratory experiments were conducted to assess the effects of PIT tagging on fish survival, growth, wound healing, and tag omission. Two tagging protocols, standard syringe injection versus insertion through a small hole pierced by a fine needle-shaped awl, were compared using a 12.5 × 2.07 mm2 tag. A control group was also included. In comparison with the awl technique, syringe injection heightened the mortality of the loach and delayed healing of the wound caused by tag insertion. No effects of either PIT tagging method were detected on the growth of surviving loach. We also field-tested similarly tagged populations within a river-based irrigation system of Sado Island, Japan. Two different sized tags (long, 12.5 × 2.07 mm2; short, 8.5 × 2.12 mm2) were compared by using antenna loggers which detected fish movement through gates and automatically logged tagged fish’s tag IDs and timestamps. By comparing logged data and actual fish collection surveys both below and above the gates, 77% and 30% of actual loach movements were confirmed to have been successfully logged for the long and short tags, respectively. The awl insertion technique with the longer tag is therefore recommended for use in similar studies of smaller fish species. 相似文献
67.
James L. Trevaskis Christine M. Mack Chengzao Sun Christopher J. Soares Lawrence J. D’Souza Odile E. Levy Diane Y. Lewis Carolyn M. Jodka Krystyna Tatarkiewicz Bronislava Gedulin Swati Gupta Carrie Wittmer Michael Hanley Bruce Forood David G. Parkes Soumitra S. Ghosh 《PloS one》2013,8(10)
Combination therapy is being increasingly used as a treatment paradigm for metabolic diseases such as diabetes and obesity. In the peptide therapeutics realm, recent work has highlighted the therapeutic potential of chimeric peptides that act on two distinct receptors, thereby harnessing parallel complementary mechanisms to induce additive or synergistic benefit compared to monotherapy. Here, we extend this hypothesis by linking a known anti-diabetic peptide with an anti-obesity peptide into a novel peptide hybrid, which we termed a phybrid. We report on the synthesis and biological activity of two such phybrids (AC164204 and AC164209), comprised of a glucagon-like peptide-1 receptor (GLP1-R) agonist, and exenatide analog, AC3082, covalently linked to a second generation amylin analog, davalintide. Both molecules acted as full agonists at their cognate receptors in vitro, albeit with reduced potency at the calcitonin receptor indicating slightly perturbed amylin agonism. In obese diabetic Lepob/Lep
ob mice sustained infusion of AC164204 and AC164209 reduced glucose and glycated haemoglobin (HbA1c) equivalently but induced greater weight loss relative to exenatide administration alone. Weight loss was similar to that induced by combined administration of exenatide and davalintide. In diet-induced obese rats, both phybrids dose-dependently reduced food intake and body weight to a greater extent than exenatide or davalintide alone, and equal to co-infusion of exenatide and davalintide. Phybrid-mediated and exenatide + davalintide-mediated weight loss was associated with reduced adiposity and preservation of lean mass. These data are the first to provide in vivo proof-of-concept for multi-pathway targeting in metabolic disease via a peptide hybrid, demonstrating that this approach is as effective as co-administration of individual peptides. 相似文献
68.
The Wnt pathway is a major embryonic signaling pathway that controls cell proliferation, cell fate, and body-axis determination in vertebrate embryos. Soon after egg fertilization, Wnt pathway components play a role in microtubule-dependent dorsoventral axis specification. Later in embryogenesis, another conserved function of the pathway is to specify the anteroposterior axis. The dual role of Wnt signaling in Xenopus and zebrafish embryos is regulated at different developmental stages by distinct sets of Wnt target genes. This review highlights recent progress in the discrimination of different signaling branches and the identification of specific pathway targets during vertebrate axial development.Wnt pathways play major roles in cell-fate specification, proliferation and differentiation, cell polarity, and morphogenesis (Clevers 2006; van Amerongen and Nusse 2009). Signaling is initiated in the responding cell by the interaction of Wnt ligands with different receptors and coreceptors, including Frizzled, LRP5/6, ROR1/2, RYK, PTK7, and proteoglycans (Angers and Moon 2009; Kikuchi et al. 2009; MacDonald et al. 2009). Receptor activation is accompanied by the phosphorylation of Dishev-elled (Yanagawa et al. 1995), which appears to transduce the signal to both the cell membrane and the nucleus (Cliffe et al. 2003; Itoh et al. 2005; Bilic et al. 2007). Another common pathway component is β-catenin, an abundant component of adherens junctions (Nelson and Nusse 2004; Grigoryan et al. 2008). In response to signaling, β-catenin associates with T-cell factors (TCFs) and translocates to the nucleus to stimulate Wnt target gene expression (Behrens et al. 1996; Huber et al. 1996; Molenaar et al. 1996).This β-catenin-dependent activation of specific genes is often referred to as the “canonical” pathway. In the absence of Wnt signaling, β-catenin is destroyed by the protein complex that includes Axin, GSK3, and the tumor suppressor APC (Clevers 2006; MacDonald et al. 2009). Wnt proteins, such as Wnt1, Wnt3, and Wnt8, stimulate Frizzled and LRP5/6 receptors to inactivate this β-catenin destruction complex, and, at the same time, trigger the phosphorylation of TCF proteins by homeodomain-interacting protein kinase 2 (HIPK2) (Hikasa et al. 2010; Hikasa and Sokol 2011). Both β-catenin stabilization and the regulation of TCF protein function by phosphorylation appear to represent general strategies that are conserved in multiple systems (Sokol 2011). Thus, the signaling pathway consists of two branches that together regulate target gene expression (Fig. 1).Open in a separate windowFigure 1.Conserved Wnt pathway branches and components. In the absence of Wnt signals, glycogen synthase kinase 3 (GSK3) binds Axin and APC to form the β-catenin destruction complex. Some Wnt proteins, such as Wnt8 and Wnt3a, stimulate Frizzled and LRP5/6 receptors to inhibit GSK3 activity and stabilize β-catenin (β-cat). Stabilized β-cat forms a complex with T-cell factors (e.g., TCF1/LEF1) to activate target genes. Moreover, GSK3 inhibition leads to target gene derepression by promoting TCF3 phosphorylation by homeodomain-interacting protein kinase 2 (HIPK2) through an unknown mechanism, for which β-catenin is required as a scaffold. This phosphorylation results in TCF3 removal from target promoters and gene activation. Other Wnt proteins, such as Wnt5a and Wnt11, use distinct receptors such as ROR2 and RYK, in addition to Frizzled, to control the the cytoskeletal organization through core planar cell polarity (PCP) proteins, small GTPases (Rho/Rac/Cdc42), and c-Jun amino-terminal kinase (JNK).Other Wnt proteins, such as Wnt5a or Wnt11, strongly affect the cytoskeletal organization and morphogenesis without stabilizing β-catenin (Torres et al. 1996; Angers and Moon 2009; Wu and Mlodzik 2009). These “noncanonical” ligands do not influence TCF3 phosphorylation (Hikasa and Sokol 2011), but may use distinct receptors such as ROR1/2 and RYK instead of or in addition to Frizzled (Hikasa et al. 2002; Lu et al. 2004; Mikels and Nusse 2006; Nishita et al. 2006, 2010; Schambony and Wedlich 2007; Grumolato et al. 2010; Lin et al. 2010; Gao et al. 2011). In such cases, signaling mechanisms are likely to include planar cell polarity (PCP) components, such as Vangl2, Flamingo, Prickle, Diversin, Rho GTPases, and c-Jun amino-terminal kinases (JNKs), which do not directly affect β-catenin stability (Fig. 1) (Sokol 2000; Schwarz-Romond et al. 2002; Schambony and Wedlich 2007; Komiya and Habas 2008; Axelrod 2009; Itoh et al. 2009; Tada and Kai 2009; Sato et al. 2010; Gao et al. 2011). This simplistic dichotomy of the Wnt pathway does not preclude some Wnt ligands from using both β-catenin-dependent and -independent routes in a context-specific manner.Despite the existence of many pathway branches, only the β-catenin-dependent branch has been implicated in body-axis specification. Recent experiments in lower vertebrates have identified additional pathway components and targets and provided new insights into the underlying mechanisms. 相似文献
69.
Uric acid, despite being a major antioxidant in the human plasma, both correlates and predicts development of obesity, hypertension, and cardiovascular disease, conditions associated with oxidative stress. While one explanation for this paradox could be that a rise in uric acid represents an attempted protective response by the host, we review the evidence that uric acid may function either as an antioxidant (primarily in plasma) or pro-oxidant (primarily within the cell). We suggest that it is the pro-oxidative effects of uric acid that occur in cardiovascular disease and may have a contributory role in the pathogenesis of these conditions. 相似文献