首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   0篇
  2014年   1篇
  2013年   1篇
  2012年   4篇
  2011年   4篇
  2010年   4篇
  2009年   8篇
  2008年   5篇
  2007年   4篇
  2006年   4篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1974年   4篇
  1973年   2篇
  1972年   2篇
  1969年   1篇
  1968年   1篇
  1962年   1篇
  1958年   1篇
  1949年   1篇
  1948年   2篇
排序方式: 共有110条查询结果,搜索用时 31 毫秒
31.
32.
The ability of a genotype to produce different phenotypes inresponse to variable environments is a crucial aspect of lifehistory strategies as it determines the shape of the fitnessset for the population. Apomictic dandelions generate littlegenetic variation between parent and offspring and plasticityis the main strategy in the face of environmental variability.The plastic response of three coexisiting dandelions has beenmeasured over two nutrient regimes. Cyclical growth patternsare species specific and in some cases independent of nutrientlevels. Differences between the agamospecies are greater athigh nutrient levels and the agamospecies appear to produceonly one phenotype at low nutrient levels. Taraxacum, plasticity, phenotypes, nutrient level  相似文献   
33.
Tropical peatlands play an important role in the global carbon cycling but little is known about factors regulating carbon dioxide (CO2) and methane (CH4) fluxes from these ecosystems. Here, we test the hypotheses that (i) CO2 and CH4 are produced mainly from surface peat and (ii) that the contribution of subsurface peat to net C emissions is governed by substrate availability. To achieve this, in situ and ex situ CO2 and CH4 fluxes were determined throughout the peat profiles under three vegetation types along a nutrient gradient in a tropical ombrotrophic peatland in Panama. The peat was also characterized with respect to its organic composition using 13C solid state cross‐polarization magic‐angle spinning nuclear magnetic resonance spectroscopy. Deep peat contributed substantially to CO2 effluxes both with respect to actual in situ and potential ex situ fluxes. CH4 was produced throughout the peat profile with distinct subsurface peaks, but net emission was limited by oxidation in the surface layers. CO2 and CH4 production were strongly substrate‐limited and a large proportion of the variance in their production (30% and 63%, respectively) was related to the quantity of carbohydrates in the peat. Furthermore, CO2 and CH4 production differed between vegetation types, suggesting that the quality of plant‐derived carbon inputs is an important driver of trace gas production throughout the peat profile. We conclude that the production of both CO2 and CH4 from subsurface peat is a substantial component of the net efflux of these gases, but that gas production through the peat profile is regulated in part by the degree of decomposition of the peat.  相似文献   
34.
Sexual polymorphism was studied in the shrub Gnidia wikstroemiana (Thunb.) Meisn. from the semiarid Nama Karoo Biome, South Africa. The populations comprised plants bearing either female flowers, or hermaphrodite flowers with variable female function. In two populations, female plants accounted for 36–37% of the flowering plants. Female flowers were smaller and their stamens were reduced to staminodes, but their styles were significantly longer than those of hermaphrodite flowers. Energy investment in flowers and fruits for females and hermaphrodites was measured using bomb calorimetry. Females produce a greater number of less costly flowers than hermaphrodites, and invest less energy per unit in production of flowers and inflorescences. In contrast, females invest more energy per unit in production of fruits and infructescences than hermaphrodites. Females overall invest 7.3% more energy in reproduction than hermaphrodites. Female flowers were obligate out-crossers (xenogamous), with 35% of nonmanipulated, open-pollinated flowers setting fruit, comparable with fruit set among selfed hermaphrodite flowers. The breeding strategy of G. wikstroemiana most closely resembles gynodioecy. This is the first report of sexual dimorphism in Gnidia L. and sub-Saharan Thymelaeaceae.  © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 152 , 219–233.  相似文献   
35.
36.
Recovery from desiccation by Tortula ruralis (Hedw.) Gaertn., Meyer and Scherb was accompanied by an immediate, rapid increase in respiration (measured as oxygen uptake) at 25.5°C or 3.5°C. The respiratory burst was greater on rehydration of moss which had been rapidly desiccated over silica gel than that which had been more slowly desiccated in atmospheres of high relative humidity. No respiration was observed in dry moss. Dried moss which had been placed in liquid nitrogen resumed respiration on rewarming and rehydration but moss which had been frozen in the hydrated state respired to a lesser extent and showed signs of freeze damage. In the initial stages of slow drying a slight increase in respiration was noted, followed by a gradual decrease as drought became more severe. In contrast to observations made on many higher plants under drought stress, this moss did not exhibit any changes in its starch and sugar content during or following desiccation, nor were there any changes in free proline levels. Using (1-14C)-glucose and (6-14C)-glucose, the relative activities of the Embden–Meyerhof–Parnas and pentose phosphate pathways in hydrated and rehydrated moss were determined, as were the activities of specific enzymes involved in these pathways. An increased activity of the Embden–Meyerhof–Parnas pathway of glucose oxidation on rehydration of Tortula was observed. The possible significance of this latter observation is outlined.  相似文献   
37.
Abstract The regenerated shoots from sodium sulphate (Na2SO4) grown callus of tobacco (Nicotiana tabacum L. cv. Wisconsin 38) were evaluated for Na2SO4 tolerance based on shoot proliferation and rooting in vitro, and seed germination in vivo in response to Na2SO4. An increase in Na2SO4 concentration resulted in significantly decreasing shoot fresh weight, number of shoots, shoot length and leaf size, and increasing per cent shoot dry weight of both control and Na2SO4-grown cultures. In rooting, shoots of Na2SO4-grown cultures exhibited the highest per cent rooting (85%) in the presence of 1% w/v Na2SO4. However, per cent rooting, root number per rooted cutting and root fresh weight decreased significantly with increasing Na2SO4 concentration when shoots were transferred to the medium in the absence of Na2SO4 for 4-monthly passages. Following acclimatization of the rooted shoots of Na2SO4-grown cultures, phenotypic variation was observed during growth and development. There were 13.2% sterile plants. Fertile plants were sorted into normal (N), tolerant (T), and sensitive (S) categories and the respective percentages of plants were 31.6, 44.7 and 10.5, based on per cent germination, germination velocity index and seedling survival to Na2SO4. The response of N, T and S types to Na2SO4 in subsequent shoot proliferation was similar to that of seed germination.  相似文献   
38.
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号