首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   273篇
  免费   22篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2019年   3篇
  2018年   3篇
  2017年   5篇
  2016年   6篇
  2015年   6篇
  2014年   6篇
  2013年   12篇
  2012年   9篇
  2011年   23篇
  2010年   3篇
  2009年   12篇
  2008年   7篇
  2007年   14篇
  2006年   11篇
  2005年   9篇
  2004年   8篇
  2003年   8篇
  2002年   16篇
  2001年   12篇
  2000年   8篇
  1999年   9篇
  1998年   10篇
  1997年   7篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   7篇
  1991年   8篇
  1990年   2篇
  1989年   8篇
  1988年   5篇
  1987年   3篇
  1986年   5篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1982年   2篇
  1979年   3篇
  1978年   2篇
  1977年   6篇
  1974年   2篇
  1973年   2篇
  1970年   2篇
  1967年   1篇
  1966年   1篇
  1963年   1篇
排序方式: 共有295条查询结果,搜索用时 15 毫秒
291.
Field Trials of Fish Marking using a Jet Inoculator   总被引:1,自引:0,他引:1  
  相似文献   
292.
293.
The in vivo phosphorylation state of glycogen synthase was re-examined by fast-atom-bombardment mass spectrometry and a procedure in which phosphoserine residues are first converted to S-ethylcysteine. In animals injected with the beta-adrenergic antagonist propranolol, the phosphorylation sites in the N-terminal (N) and C-terminal (C) cyanogen bromide peptides were identified as the serine residues at N7, the region C28-C39, C42, C46 and C100. In animals injected with adrenalin, the phosphorylation of N7 increased from 0.6 to 0.8 mol/mol, the region C28-C39 from 0.7 to 1.2 mol/mol and C100 from 0.3 to 0.6 mol/mol. The phosphorylation states of C42 (0.7 mol/mol) and C46 (0.9 mol/mol) were unchanged. In addition, two further serine residues became phosphorylated at positions N10 (0.5 mol/mol) and C87 (0.5 mol/mol), which were not phosphorylated in the absence of adrenalin. Residues N10 and C42 have not been recognized as in vivo sites of phosphorylation previously. The results suggest that N10 is phosphorylated by a novel protein kinase which may be activated by cyclic-AMP-dependent protein kinase. The phosphorylation of C42 is likely to be catalysed by glycogen synthase kinase 3. The protein kinases responsible for phosphorylating N7, the region C28-C39, C46, C87 and C100 in vivo and the molecular mechanisms by which adrenalin inactivates glycogen synthase in vivo are discussed. Residue N3, a major site phosphorylated by casein kinase-I in vitro is not phosphorylated in vivo. This and other evidence indicates that casein kinase-I is not a glycogen synthase kinase in vivo.  相似文献   
294.
Purified preparations of glycogen synthase are a complex of two proteins, the catalytic subunit of glycogen synthase and glycogenin, present in a 1:1 molar ratio [J. Pitcher, C. Smythe, D. G. Campbell & P. Cohen (1987) Eur. J. Biochem. 169, 497-502]. This complex has now been found to contain a further glucosyltransferase activity that catalyses the transfer of glucose residues from UDP-Glc to glucosylated-glycogenin. The glucosyltransferase, which is of critical importance in forming the primer required for de novo glycogen biosynthesis, is distinct from glycogen synthase in several ways. It has an absolute requirement for divalent cations, a 1000-fold lower Km for UDP-Glc and its activity is unaffected by incubation with UDP-pyridoxal or exposure to 2 M LiBr, which inactivate glycogen synthase by 95% and 100%, respectively. The priming glucosyltransferase and glycogen synthase activities coelute on Superose 6, and the rate of glycosylation of glycogenin is independent of enzyme concentration, suggesting that the reaction is catalysed intramolecularly by a subunit of the glycogen synthase complex. This component has been identified as glycogenin, following dissociation of the subunits in 2 M LiBr and their separation on Superose 12. The glycosylation of isolated glycogenin reaches a plateau when five additional glucose residues have been added to the protein, and digestion with alpha-amylase indicates that all the glycogenin molecules contain at least one glucosyl residue prior to autoglucosylation. The priming glucosyltransferase activity of glycogenin is unaffected by either glucose 6-phosphate or by phosphorylation of the catalytic subunit of glycogen synthase. The mechanism of primer formation is discussed in the light of the finding that glycogenin is an enzyme that catalyses its own autoglucosylation.  相似文献   
295.
Shoals composed of equal numbers of two size-classes of European minnows were observed undisturbed, feeding and after threat from a pike in a large arena tank.
The time/frequency budget and analysed sequences of behaviour of the two size-classes were very similar. Irrespective of size, for standard behaviour measures, fish in the shoal behaved similarly under the same external influences, including predator threat.
In contrast, however, the distribution of the two size-classes provided evidence of size segregation within the shoal. This was brought about by individual minnows making shoaling responses preferentially to their own size-class. After exposure to the predator, shoaling responses changed and differed between small and large minnows.
The outcomes of contests at foraging patches were governed primarily by fish size and information asymmetry rather than by occupation of a feeding site.
The experiment shows that asymmetrical pay-offs in foraging and in response to predator threat are the probable reasons for size-segregation behaviours. This conclusion supports the views of earlier workers that mechanical sorting by swimming speed is not an important factor in size segregation in shoals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号