首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
  29篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   5篇
  2008年   4篇
  2007年   5篇
  2006年   1篇
  2005年   2篇
  1995年   1篇
  1988年   1篇
  1987年   1篇
  1980年   3篇
排序方式: 共有29条查询结果,搜索用时 0 毫秒
11.
1. Although boreal lakes are ice‐covered for several months annually, little is known about the behaviour of fish under ice. To consider the reasons for diel vertical migrations (DVM) it is important to compare periods under ice as opposed to under open water. Echosounding provides a tool for non‐intrusive continuous monitoring of fish, even in winter. 2. Changes in the vertical distribution of fish through six 48‐h periods were monitored using a stationary, mounted echosounder that beamed vertically either from the bottom up or from the surface down from February to April, 2003. The up‐beaming and down‐beaming transducers were run alternately for 24 h each over the 48‐h period. Standard echo analysis software was used to detect fish traces and estimate the vertical and temporal distribution of fish abundance. Fish were sampled with a winter seine. 3. Prominent diel vertical migration in response to changing light level was detected throughout the study period (late winter to spring). Fish were highest in the water column at sunset and sunrise. In daylight, most detected fish were well below 10‐m depth. The number of fish detected was greatest during the night when they occurred throughout almost the whole water column, sometimes with a considerable number very close to the ice. Fish were mostly vendace and whitefish. 4. It became evident from data from the up‐beaming transducer that at night fish may occupy the layer closest to the surface. These fish would not have been detected if we had only used the down‐beaming transducer. The overall pattern of DVM in winter was very similar to that in summer. The results support the suggestion that DVM is a genetically fixed behavioural trait responding to the contemporary level of illumination.  相似文献   
12.
1. Theory predicts that the stability of a community should increase with diversity. However, despite increasing interest in the topic, most studies have focused on aggregate community properties (e.g. biomass, productivity) in small‐scale experiments, while studies using observational field data on realistic scales to examine the relationship between diversity and compositional stability are surprisingly rare. 2. We examined the diversity–stability relationship of stream invertebrate communities based on a 4‐year data set from boreal headwater streams, using among‐year similarity in community composition (Bray–Curtis coefficient) as our measure of compositional stability. We related stability to species richness and key environmental factors that may affect the diversity–stability relationship (stream size, habitat complexity, productivity and flow variability) using simple and partial regressions. 3. In simple regressions, compositional stability was positively related to species richness, stream size, productivity and habitat complexity, but only species richness and habitat complexity were significantly related to stability in partial regressions. There was, however, a strong relationship between species richness and abundance. When abundance was controlled for through re‐sampling, stability was unrelated to species richness, indicating that sampling effects were the predominant mechanism producing the positive stability–diversity relationship. By contrast, the relationship between stability and habitat complexity (macrophyte cover) became even stronger when the influence of community abundance was controlled for. Habitat complexity is thus a key factor enhancing community stability in headwater streams.  相似文献   
13.
1. We examined species–environment relationships and community concordance between aquatic bryophytes and insects in boreal springs. We sampled bryophytes (Marchantiophyta and Bryophyta), benthic macroinvertebrates and environmental variables in 138 springs in Finland, spanning a latitudinal gradient of 1000 km. Macroinvertebrates were subdivided into two groups: Ephemeroptera, Plecoptera, Trichoptera and Coleoptera (EPTC taxa) and chironomid midges (Diptera; Chironomidae). Our aim was to test whether EPTC taxa could be used as surrogates in biodiversity surveys and bioassessment for the two less-well known organism groups, chironomids and bryophytes.
2. Bryophyte assemblages were clearly differentiated along gradients in thermal conditions and water chemistry (pH, conductivity). Chironomids and EPTC were also differentiated in relation to thermal conditions and, to a lesser extent, physical habitat variables, but were only weakly associated to spring water chemistry. Chironomid and EPTC assemblages were more concordant with each other than with bryophytes, but all concordances were relatively weak.
3. Our results suggest that even if the overall compositional patterns of the three taxonomic groups were significantly concordant, the relative importance of environmental drivers underlying their community compositions differed strongly. The results thus imply that spring bryophytes and insects are relatively poor surrogates for each other. The proportion of spring specialists was highest in bryophytes, promoting their primacy for spring bioassessment and biodiversity conservation. We suggest that adequate variation in water chemistry be assured to protect spring bryophyte biodiversity, whereas preserving the physical variation of springs is more important for macroinvertebrates.  相似文献   
14.
15.
Flux measurements from eight global FLUXNET sites were used to estimate parameters in a process‐based, land‐surface model (CSIRO Biosphere Model (CBM), using nonlinear parameter estimation techniques. The parameters examined were the maximum photosynthetic carboxylation rate () the potential photosynthetic electron transport rate (jmax, 25) of the leaf at the top of the canopy, and basal soil respiration (rs, 25), all at a reference temperature of 25°C. Eddy covariance measurements used in the analysis were from four evergreen forests, three deciduous forests and an oak‐grass savanna. Optimal estimates of model parameters were obtained by minimizing the weighted differences between the observed and predicted flux densities of latent heat, sensible heat and net ecosystem CO2 exchange for each year. Values of maximum carboxylation rates obtained from the flux measurements were in good agreement with independent estimates from leaf gas exchange measurements at all evergreen forest sites. A seasonally varying and jmax, 25 in CBM yielded better predictions of net ecosystem CO2 exchange than a constant and jmax, 25 for all three deciduous forests and one savanna site. Differences in the seasonal variation of and jmax, 25 among the three deciduous forests are related to leaf phenology. At the tree‐grass savanna site, seasonal variation of and jmax, 25 was affected by interactions between soil water and temperature, resulting in and jmax, 25 reaching maximal values before the onset of summer drought at canopy scale. Optimizing the photosynthetic parameters in the model allowed CBM to predict quite well the fluxes of water vapor and CO2 but sensible heat fluxes were systematically underestimated by up to 75 W m−2.  相似文献   
16.
Testing linearity against smooth transition autoregressive models   总被引:25,自引:0,他引:25  
  相似文献   
17.
This paper develops a statistical model for daily gross primary production (GPP) in boreal and temperate coniferous forests. The model applies the light use efficiency (LUE) approach, which estimates the conversion efficiency of daily absorbed photosynthetically active radiation (APAR) into daily GPP as a product of potential LUE and modifying factors. The latter were derived from daily total APAR and daily mean temperature, vapour pressure deficit (VPD) and soil water content (SWC). Modelling data came from five European eddy covariance measurement towers over 2–8 years. The model was tested against independent data from two AmeriFlux stations. The model with the APAR, temperature and VPD modifiers worked well in almost all the site–year combinations, but the SWC modifier only improved the fit in few cases. Geographical variation was found in the modifiers and potential LUE in site-specific models. When a model was fitted to pooled data, differences between sites could be explained by potential LUE, leaf area and environmental conditions. The test against the AmeriFlux data corroborated this finding. The potential LUE varied from 1.9 to 3.1 g C MJ−1, and a weak correlation was found between foliar nitrogen concentration and potential LUE. Some year-to-year variation remained which could be captured by neither the pooled nor the site-specific models.  相似文献   
18.
The electric organ discharges (EODs) of five mormyrid species ( Marcusenius senegalensis , Brevimyrus niger , Petrocephalus bovei , Pollimyrus isidori , Hippopotamyrus pictus ) from different sampling sites from the Upper Volta system in West Africa were investigated. EOD waveforms were recorded at high sampling rates in order to compare signal waveform parameters of the different species from different locations. Except for H. pictus , EODs within a species differed significantly from one another in some parameters and waveform variability at least between some sampling sites. In addition, each species showed a continuous spectrum of waveform variations, all or only parts of which were found at certain localities. Although there was variability and sometimes similarities between species, the EOD waveforms were species specific. Knowing their variation spectrum, they can be used for species determination and are probably used for species recognition by the mormyrids. Similarities or differences in EOD waveform expression within a species were not related to geographical distance. By contrast, we suggest that biotic environmental factors at a given location influence the expression of EOD waveforms. These factors affect absolute measurements such as EOD duration and fast Fourier transformation peak frequency as well as the amount of variation for certain waveform parameters across species in a similar manner for a given site. Although EOD waveform might be important for the establishment of reproductive barriers between species, our results suggest that differences in waveforms may not necessarily reflect different species or speciation processes in progress.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 61–80.  相似文献   
19.
1. Changes in cladoceran subfossils in the surface sediments of 54 shallow lakes were studied along a European latitude gradient (36–68°N). Multivariate methods, such as regression trees and ordination, were applied to explore the relationships between cladoceran taxa distribution and contemporary environmental variables, with special focus on the impact of climate. 2. Multivariate regression tree analysis showed distinct differences in cladoceran community structure and lake characteristics along the latitude gradient, identifying three groups: (i) northern lakes characterised by low annual mean temperature, conductivity, nutrient concentrations and fish abundance, (ii) southern, macrophyte rich, warm water lakes with high conductivity and high fish abundance and (iii) Mid‐European lakes at intermediate latitudes with intermediate conductivities, trophic state and temperatures. 3. Large‐sized, pelagic species dominated a group of seven northern lakes with low conductivity, where acid‐tolerant species were also occasionally abundant. Small‐sized, benthic‐associated species dominated a group of five warm water lakes with high conductivity. Cladoceran communities generally showed low species‐specific preferences for habitat and environmental conditions in the Mid‐European group of lakes. Taxon richness was low in the southern‐most, high‐conductivity lakes as well as in the two northern‐most sub‐arctic lakes. 4. The proportion of cladoceran resting eggs relative to body shields was high in the northern lakes, and linearly (negatively) related to both temperature and Chl a, indicating that both cold climate (short growing season) and low food availability induce high ephippia production. 5. Latitude and, implicitly, temperature were strongly correlated with conductivity and nutrient concentrations, highlighting the difficulties of disentangling a direct climate signal from indirect effects of climate, such as changes in fish community structure and human‐related impacts, when a latitude gradient is used as a climate proxy. Future studies should focus on the interrelationships between latitude and gradients in nutrient concentration and conductivity.  相似文献   
20.
1. Most Finnish streams were channelised during the 19th and 20th century to facilitate timber floating. By the late 1970s, extensive programmes were initiated to restore these degraded streams. The responses of fish populations to restoration have been little studied, however, and monitoring of other stream biota has been negligible. In this paper, we review results from a set of studies on the effects of stream restoration on habitat structure, brown trout populations, benthic macroinvertebrates and leaf retention. 2. In general, restoration greatly increased stream bed heterogeneity. The cover of mosses in channelised streams was close to that of unmodified reference sites, but after restoration moss cover declined to one‐tenth of the pre‐restoration value. 3. In one stream, densities of age‐0 trout were slightly lower after restoration, but the difference to an unmodified reference stream was non‐significant, indicating no effect of restoration. In another stream, trout density increased after restoration, indicating a weakly positive response. The overall weak response of trout to habitat manipulations probably relates to the fact that restoration did not increase the amount of pools, a key winter habitat for salmonids. 4. Benthic invertebrate community composition was more variable in streams restored 4–6 years before sampling than in unmodified reference streams or streams restored 8 years before sampling. Channelised streams supported a distinctive set of indicator species, most of which were filter‐feeders or scrapers, while most of the indicators in streams restored 8 years before sampling were shredders. 5. Leaf retentiveness in reference streams was high, with 60–70% of experimentally released leaves being retained within 50 m. Channelised streams were poorly retentive (c. 10% of leaves retained), and the increase in retention following restoration was modest (+14% on average). Aquatic mosses were a key retentive feature in both channelised and natural streams, but their cover was drastically reduced through restoration. 6. Mitigation of the detrimental impacts of forestry (e.g. removal of mature riparian forests) is a major challenge to the management of boreal streams. This goal cannot be achieved by focusing efforts only on restoration of physical structures in stream channels, but also requires conservation and ecologically sound management of riparian forests.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号