首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   321篇
  免费   21篇
  2020年   2篇
  2019年   2篇
  2018年   8篇
  2017年   3篇
  2016年   4篇
  2015年   7篇
  2014年   9篇
  2013年   14篇
  2012年   20篇
  2011年   9篇
  2010年   13篇
  2009年   12篇
  2008年   13篇
  2007年   13篇
  2006年   9篇
  2005年   13篇
  2004年   8篇
  2003年   12篇
  2002年   12篇
  2001年   5篇
  2000年   5篇
  1999年   17篇
  1998年   5篇
  1997年   6篇
  1996年   4篇
  1995年   4篇
  1994年   6篇
  1993年   4篇
  1992年   2篇
  1991年   5篇
  1989年   3篇
  1988年   3篇
  1987年   6篇
  1986年   5篇
  1985年   4篇
  1983年   4篇
  1982年   4篇
  1981年   5篇
  1980年   8篇
  1979年   4篇
  1978年   3篇
  1976年   5篇
  1975年   3篇
  1974年   5篇
  1973年   8篇
  1971年   3篇
  1968年   3篇
  1967年   2篇
  1966年   3篇
  1938年   3篇
排序方式: 共有342条查询结果,搜索用时 109 毫秒
101.
102.
Between ca. 790 and 1000 AD, Scandinavian settlers occupied the islands of the North Atlantic: Shetland, the Orkneys, the Hebrides, the Faroes, Iceland, and Greenland. These offshore islands initially supported stands of willow, alder, and birch, and a range of non-arboreal species suitable for pasture for the imported Norse domestic animals. Overstocking of domestic animals, fuel collection, ironworking, and construction activity seems to have rapidly depleted the dwarf trees, and several scholars argue that soil erosion and other forms of environmental degradation also resulted from Norse landuse practices in the region. Such degradation of pasture communities may have played a significant role in changing social relationships and late medieval economic decline in the western tier colonies of Iceland and Greenland. This paper presents simple quantified models for Scandinavian environmental impact in the region, and suggests some sociopolitical causes for ultimately maladaptive floral degradation.  相似文献   
103.
104.
105.

Background

Krill oil is a rich source of the long-chain n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which may alter immune function after exercise. The aim of the study was to determine the effects of krill oil supplementation on post exercise immune function and performance.

Methods

Nineteen males and 18 females (age: 25.8 ± 5.3 years; mean ± S.D.) were randomly assigned to 2 g/day of krill oil (n = 18) or placebo (n = 19) supplementation for 6 weeks. A maximal incremental exercise test and cycling time trial (time to complete set amount of work) were performed pre-supplementation with the time trial repeated post-supplementation. Blood samples collected pre- and post- supplementation at rest, and immediately, 1 and 3h post-exercise. Plasma IL-6 and thiobarbituric acid reactive substances (TBARS) concentrations and, erythrocyte fatty acid composition were measured. Natural killer (NK) cell cytotoxic activity and peripheral blood mononuclear cell (PBMC) IL-2, IL-4, IL-10, IL-17 and IFNγ production were also measured.

Results

No effects of gender were noted for any variable. PBMC IL-2 and NK cell cytotoxic activity were greater (P < 0.05) 3h post exercise in the krill oil compared to the control group. Plasma IL-6 and TBARS, PBMC IL-4, IL-10, IL-17 and IFNγ production, along with performance and physiological measures during exercise, were not different between groups.

Conclusion

Six weeks of krill oil supplementation can increase PBMC IL-2 production and NK cell cytotoxic activity 3h post-exercise in both healthy young males and females. Krill oil does not modify exercise performance.  相似文献   
106.
107.
In natural or experimental oral scrapie infection of sheep, disease associated prion protein (PrP(d)) often first accumulates in Peyer's patch (PP) follicles. The route by which infectivity reaches the follicles is unknown, however, intestinal epithelial cells may participate in intestinal antigenic presentation by delivering exosomes as vehicles of luminal antigens. In a previous study using an intestinal loop model, following inoculation of scrapie brain homogenate, inoculum associated PrP(d) was detected by light microscopy shortly (15 minutes to 3.5 hours) after inoculation in the villous lacteals and sub-mucosal lymphatics. No PrP(d) was located within the follicle-associated epithelium (FAE), sub-FAE domes or the PP follicles. To evaluate this gut loop model and the transportation routes in more detail, we used electron microscopy (EM) to study intestinal tissues exposed to scrapie or control homogenates for 15 minutes to 10 days. In addition, immuno-EM was used to investigate whether exosomes produced in the FAE may possess small amounts of PrP(d) that were not detectable by light microscopy. This study showed that the integrity of the intestinal epithelium was sustained in the intestinal loop model. Despite prominent transcytotic activity and exosome release from the FAE of the ileal PP in sheep, these structures were not associated with transportation of PrP(d) across the mucosa. The study did not determine how infectivity reaches the follicles of PPs. The possibility that the infectious agent is transported across the FAE remains a possibility if it occurs in a form that is undetectable by the methods used in this study. Infectivity may also be transported via lymph to the blood and further to all other lymphoid tissues including the PP follicles, but the early presence of PrP(d) in the PP follicles during scrapie infection argues against such a mechanism.  相似文献   
108.
Phenotypes of Bacillus subtilis priA mutants suggest that they are deficient in the restart of stalled chromosomal replication forks. The presumed activity of PriA in the restart process is to promote the assembly of a multiprotein complex, the primosome, which functions to recruit the replication fork helicase onto the DNA. We have proposed previously that three proteins involved in the initiation of replication at oriC in B. subtilis, DnaB, DnaD and DnaI, are components of the PriA primosome in this bacterium. However, the involvement of these proteins in replication restart has not yet been studied. Here, we describe dnaB mutations that suppress the phenotypes of B. subtilis priA mutants. In a representative mutant, the DnaC helicase is loaded onto single-stranded DNA in a PriA-independent, DnaD- and DnaI-dependent manner. These observations confirm that DnaB, DnaD and DnaI are primosomal proteins in B. subtilis. Moreover, their involvement in the suppression of priA phenotypes shows that they participate in replication fork restart in B. subtilis.  相似文献   
109.
Oxidative stress is a hallmark of asthma, and increased levels of oxidants are considered markers of the inflammatory process. Most studies to date addressing the role of oxidants in the etiology of asthma were based on the therapeutic administration of low m.w. antioxidants or antioxidant mimetic compounds. To directly address the function of endogenous hydrogen peroxide in the pathophysiology of allergic airway disease, we comparatively evaluated mice systemically overexpressing catalase, a major antioxidant enzyme that detoxifies hydrogen peroxide, and C57BL/6 strain matched controls in the OVA model of allergic airways disease. Catalase transgenic mice had 8-fold increases in catalase activity in lung tissue, and had lowered DCF oxidation in tracheal epithelial cells, compared with C57BL/6 controls. Despite these differences, both strains showed similar increases in OVA-specific IgE, IgG1, and IgG2a levels, comparable airway and tissue inflammation, and identical increases in procollagen 1 mRNA expression, following sensitization and challenge with OVA. Unexpectedly, mRNA expression of MUC5AC and CLCA3 genes were enhanced in catalase transgenic mice, compared with C57BL/6 mice subjected to Ag. Furthermore, when compared with control mice, catalase overexpression increased airway hyperresponsiveness to methacholine both in naive mice as well as in response to Ag. In contrast to the prevailing notion that hydrogen peroxide is positively associated with the etiology of allergic airways disease, the current findings suggest that endogenous hydrogen peroxide serves a role in suppressing both mucus production and airway hyperresponsiveness.  相似文献   
110.
Arabinogalactan proteins (AGPs), a family of hydroxyproline-rich glycoproteins, occur throughout the plant kingdom. The lysine-rich classical AGP subfamily in Arabidopsis consists of three members, AtAGP17, 18 and 19. In this study, AtAGP19 was examined in terms of its gene expression pattern and function. AtAGP19 mRNA was abundant in stems, with moderate levels in flowers and roots and low levels in leaves. AtAGP19 promoter-controlled GUS activity was high in the vasculature of leaves, roots, stems and flowers, as well as styles and siliques. A null T-DNA knockout mutant of AtAGP19 was obtained and compared to wild-type (WT) plants. The atagp19 mutant had: (i) smaller, rounder and flatter rosette leaves, (ii) lighter-green leaves containing less chlorophyll, (iii) delayed growth, (iv) shorter hypocotyls and inflorescence stems, and (v) fewer siliques and less seed production. Several abnormalities in cell size, number, shape and packing were also observed in the mutant. Complementation of this pleiotropic mutant with the WT AtAGP19 gene restored the WT phenotypes and confirmed that AtAGP19 functions in various aspects of plant growth and development, including cell division and expansion, leaf development and reproduction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号