首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   6篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   10篇
  2012年   9篇
  2011年   2篇
  2010年   5篇
  2009年   7篇
  2008年   7篇
  2007年   3篇
  2006年   2篇
  2005年   5篇
  2004年   6篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  1999年   11篇
  1998年   4篇
  1997年   4篇
  1995年   4篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1989年   3篇
  1988年   2篇
  1987年   6篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1980年   7篇
  1979年   2篇
  1978年   2篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1971年   2篇
  1959年   1篇
  1951年   1篇
  1950年   1篇
  1930年   1篇
排序方式: 共有145条查询结果,搜索用时 62 毫秒
41.
The effect of exposure to freezing temperature (?15°C) on leaf phospholipid composition of hardened rye (Secale cereale L.) and hardened wheat cultivars (‘Miranovskaja 808’, ‘Bezostaja 1’, ‘Short Mexican’ and ‘Penjamo 62’), which differ in their resistance to frost, was investigated. Hardening took place under natural conditions. All the seedlings attained an equal level of linolenic acid in their leaves during hardening. Exposure to freezing temperatures resulted in a loss of phosphatidyl choline and accumulation of phosphatidic acid in the leaves. The ratio of phosphatidic acid to phosphatidyl choline, but not the level of poly-unsaturated fatty acids in the leaves, was related to their ability to survive at low temperatures. As freezing injury is caused by the formation of ice crystals in both extra- and intracellular space, it is probable that the plasma membranes of the investigated cultivars differed with respect to their water permeability. It is concluded that the plants, depending on the degree of their resistance to cold, produce an unknown substance of lipidic nature upon exposure to cold, with the aid of which they adjust the transitional state of their membranes to the prevailing temperature and, at the same time, facilitate the efflux of water from the cells.  相似文献   
42.
The ability of prey to detect predators directly affects their probability of survival. Chemical cues are known to be important for predator detection in aquatic environments, but the role of other potential cues is controversial. We tested for changes in behaviour of Rana temporaria tadpoles in response to chemical, visual, acoustic, and hydraulic cues originating from dragonfly larvae (Aeshna cyanea) and fish (Gasterosteus aculeatus). The greatest reduction in tadpole activity occurred when all cues were available, but activity was also significantly reduced by visual cues only. We did not find evidence for tadpoles lowering their activity in response to acoustic and hydraulic cues. There was no spatial avoidance of predators in our small experimental containers. The results show that anuran larvae indeed use vision for predator detection, while acoustic and hydraulic cues may be less important. Future studies of predator‐induced responses of tadpoles should not only concentrate on chemical cues but also consider visual stimuli. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   
43.
44.
Haemophilus ducreyi causes chancroid, a sexually transmitted genital ulcer disease implicated in increased heterosexual transmission of HIV. As part of an effort to identify H . ducreyi gene products involved in virulence and pathogenesis, we created random Tn phoA insertion mutations in an H . ducreyi 35 000 library cloned in Escherichia coli . Inserts encoding exported or secreted PhoA fusion proteins were characterized by DNA sequencing. One such clone encoded a Cu–Zn superoxide dismutase (SOD) enzyme. The Cu–Zn SOD was periplasmic in H . ducreyi and accounted for most of the detectable SOD activity in whole-cell lysates of H . ducreyi grown in vitro . To investigate the function of the Cu–Zn SOD, we created a Cu–Zn SOD-deficient H . ducreyi strain by inserting a cat cassette into the sodC gene. The wild-type and Cu–Zn SOD null mutant strains were equally resistant to excess cytoplasmic superoxide induced by paraquat, demonstrating that the Cu–Zn SOD did not function in the detoxification of cytoplasmic superoxide. However, the Cu–Zn SOD null strain was significantly more susceptible to killing by extracellular superoxide than the wild type. This result suggests that the H . ducreyi Cu–Zn SOD may play a role in bacterial defence against oxidative killing by host immune cells during infection.  相似文献   
45.
46.
The diagnostic advantage of fluorescence microscopy (FM) of Papanicolaou-stained cytological specimens obtained by bronchoscopy has been described previously. This study was designed to evaluate the method's diagnostic benefit in cytological preparations of pleural effusions in cases of active pulmonary tuberculosis. In contrast to bronchial material there is no advantage in cytological evaluation of pleural effusions by FM.  相似文献   
47.
In the inner ear of birds, as in mammals, reptiles and amphibians, acetylcholine released from efferent neurons inhibits hair cells via activation of an apamin-sensitive, calcium-dependent potassium current. The particular potassium channel involved in avian hair cell inhibition is unknown. In this study, we cloned a small-conductance, calcium-sensitive potassium channel (gSK2) from a chicken cochlear library. Using RT-PCR, we demonstrated the presence of gSK2 mRNA in cochlear hair cells. Electrophysiological studies on transfected HEK293 cells showed that gSK2 channels have a conductance of approximately 16 pS and a half-maximal calcium activation concentration of 0.74±0.17 M. The expressed channels were blocked by apamin (IC50=73.3±5.0 pM) and d-tubocurarine (IC50=7.6±1.0 M), but were insensitive to charybdotoxin. These characteristics are consistent with those reported for acetylcholine-induced potassium currents of isolated chicken hair cells, suggesting that gSK2 is involved in efferent inhibition of chicken inner ear. These findings imply that the molecular mechanisms of inhibition are conserved in hair cells of all vertebrates.  相似文献   
48.
49.
50.
The second-generation antipsychotic olanzapine is effective in reducing psychotic symptoms but can cause extreme weight gain in human patients. We investigated the role of the gut microbiota in this adverse drug effect using a mouse model. First, we used germ-free C57BL/6J mice to demonstrate that gut bacteria are necessary and sufficient for weight gain caused by oral delivery of olanzapine. Second, we surveyed fecal microbiota before, during, and after treatment and found that olanzapine potentiated a shift towards an “obesogenic” bacterial profile. Finally, we demonstrated that olanzapine has antimicrobial activity in vitro against resident enteric bacterial strains. These results collectively provide strong evidence for a mechanism underlying olanzapine-induced weight gain in mouse and a hypothesis for clinical translation in human patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号