首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   13篇
  74篇
  2020年   3篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   3篇
  2011年   4篇
  2010年   4篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   4篇
  1994年   1篇
  1993年   1篇
  1991年   3篇
  1990年   2篇
  1986年   2篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1979年   1篇
  1972年   1篇
  1962年   1篇
  1961年   1篇
  1958年   1篇
排序方式: 共有74条查询结果,搜索用时 0 毫秒
61.
Length variation due to tandem repeats is now recognized as a common feature of animal mitochondrial DNA; however, the evolutionary dynamics of repeated sequences are not well understood. Using phylogenetic analysis, predictions of three models of repeat evolution were tested for arrays of 260-bp repeats in the cyprinid fish Cyprinella spiloptera. Variation at different nucleotide positions in individual repeats supported different models of repeat evolution. One set of characters included several nucleotide variants found in all copies from a limited number of individuals, while the other set included an 8- bp deletion found in a limited number of copies in all individuals. The deletion and an associated nucleotide change appear to be the result of a deterministic, rather than stochastic, mutation process. Parallel origins of repeat arrays in different mitochondrial lineages, possibly coupled with a homogenization mechanism, best explain the distribution of nucleotide variation.   相似文献   
62.
Type l voltage-gated K+ channels in murine lymphocytes were studied under voltage clamp in cell-attached patches and in the whole-cell configuration. The kinetics of activation of whole-cell currents during depolarizing pulses could be fit by a single exponential after an initial delay. Deactivation upon repolarization of both macroscopic and microscopic currents was mono-exponential, except in Rb-Ringer or Cs-Ringer solution in which tail currents often displayed "hooks," wherein the current first increased or remained constant before decaying. In some cells type l currents were contaminated by a small component due to type n K+ channels, which deactivate approximately 10 times slower than type l channels. Both macroscopic and single channel currents could be dissected either kinetically or pharmacologically into these two K+ channel types. The ionic selectivity and conductance of type l channels were studied by varying the internal and external permeant ion. With 160 mM K+ in the cell, the relative permeability calculated from the reversal potential with the Goldman-Hodgkin-Katz equation was K+ (identical to 1.0) greater than Rb+ (0.76) greater than NH4+ = Cs+ (0.12) much greater than Na+ (less than 0.004). Measured 30 mV negative to the reversal potential, the relative conductance sequence was quite different: NH4+ (1.5) greater than K+ (identical to 1.0) greater than Rb+ (0.5) greater than Cs+ (0.06) much greater than Na+, Li+, TMA+ (unmeasurable). Single channel current rectification resembled that of the whole-cell instantaneous I-V relation. Anomalous mole-fraction dependence of the relative permeability PNH4/PK was observed in NH4(+)-K+ mixtures, indicating that the type l K+ channel is a multi-ion pore. Compared with other K+ channels, lymphocyte type l K+ channels are most similar to "g12" channels in myelinated nerve.  相似文献   
63.
H+ currents in human neutrophils, rat alveolar epithelial cells, and several mammalian phagocyte cell lines were studied using whole-cell and excised-patch tight-seal voltage clamp techniques at temperatures between 6 and 42°C. Effects of temperature on gating kinetics were distinguished from effects on the H+ current amplitude. The activation and deactivation of H+ currents were both highly temperature sensitive, with a Q 10 of 6–9 (activation energy, E a, ≈ 30–38 kcal/mol), greater than for most other ion channels. The similarity of E a for channel opening and closing suggests that the same step may be rate determining. In addition, when the turn-on of H+ currents with depolarization was fitted by a delay and single exponential, both the delay and the time constant (τact) had similarly high Q 10. These results could be explained if H+ channels were composed of several subunits, each of which undergoes a single rate-determining gating transition. H+ current gating in all mammalian cells studied had similarly strong temperature dependences. The H+ conductance increased markedly with temperature, with Q 10 ≥ 2 in whole-cell experiments. In excised patches where depletion would affect the measurement less, the Q 10 was 2.8 at >20°C and 5.3 at <20°C. This temperature sensitivity is much greater than for most other ion channels and for H+ conduction in aqueous solution, but is in the range reported for H+ transport mechanisms other than channels; e.g., carriers and pumps. Evidently, under the conditions employed, the rate-determining step in H+ permeation occurs not in the diffusional approach but during permeation through the channel itself. The large E a of permeation intrinsically limits the conductance of this channel, and appears inconsistent with the channel being a water-filled pore. At physiological temperature, H+ channels provide mammalian cells with an enormous capacity for proton extrusion.  相似文献   
64.
ABSTRACT. Two new classes Synchromophyceae and Picophagea, belonging to the heterokonts, have been proposed recently in separate studies of 18S rRNA phylogenies. Here we revise the 18S phylogeny of these classes by including all available sequenced species and applying Bayesian and maximum likelihood methods; Synchroma grande groups with the photophagotrophic Chlamydomyxa labyrinthuloides with high statistical support. This clade is sister to Chrysophyceae, together they share a common ancestry. Our results show that the creation of class Synchromophyceae by Horn et al. was premature, because they did not include data from the closely related C. labyrinthuloides and Picophagus flagellatus species. A revision of these classes should include additional species and most likely multigene phylogenies.  相似文献   
65.
66.
Voltage-gated proton channels were studied under voltage clamp in excised, inside-out patches of human eosinophils, at various pHi with pHo 7.5 or 6.5 pipette solutions. H+ current fluctuations were observed consistently when the membrane was depolarized to voltages that activated H+ current. At pHi < or = 5.5 the variance increased nonmonotonically with depolarization to a maximum near the midpoint of the H+ conductance-voltage relationship, gH-V, and then decreased, supporting the idea that the noise is generated by H+ channel gating. Power spectral analysis indicated Lorentzian and 1/f components, both related to H+ currents. Unitary H+ current amplitude was estimated from stationary or quasi-stationary variance, sigmaH2. We analyze sigmaH2 data obtained at various voltages on a linearized plot that provides estimates of both unitary conductance and the number of channels in the patch, without requiring knowledge of open probability. The unitary conductance averaged 38 fS at pHi 6.5, and increased nearly fourfold to 140 fS at pHi 5.5, but was independent of pHo. In contrast, the macroscopic gH was only 1.8-fold larger at pHi 5.5 than at pHi 6.5. The maximum H+ channel open probability during large depolarizations was 0.75 at pHi 6.5 and 0.95 at pHi 5.5. Because the unitary conductance increases at lower pHi more than the macroscopic gH, the number of functional channels must decrease. Single H+ channel currents were too small to record directly at physiological pH, but at pHi < or = 5.5 near Vthreshold (the voltage at which gH turns on), single channel-like current events were observed with amplitudes 7-16 fA.  相似文献   
67.
68.
The THP-1 human monocytic leukemia cell line is a useful model of macrophage differentiation. Patch clamp methods were used to identify five types of ion channels in undifferentiated THP-1 monocytes. (i) Delayed rectifier K+ current, I DR, was activated by depolarization to potentials positive to −50 mV, inactivated with a time constant of several hundred msec, and recovered from inactivation with a time constant ∼21 sec. I DR was inhibited by 4-aminopyridine (4-AP), tetraethylammonium (TEA+), and potently by charybdotoxin (ChTX). (ii) Ca-activated K+ current (I SK) dominated whole-cell currents in cells studied with 3–10 μm [Ca2+] i . I SK was at most weakly voltage-dependent, with reduced conductance at large positive potentials, and was inhibited by ChTX and weakly by TEA+, Cs+, and Ba2+, but not 4-AP or apamin. Block by Cs+ and Ba2+ was enhanced by hyperpolarization. (iii) Nonselective cation current, I cat, appeared at voltages above +20 mV. Little time-dependence was observed, and a panel of channel blockers was without effect. (iv) Chloride current, I Cl, was present early in experiments, but disappeared with time. (v) Voltage-activated H+ selective current is described in detail in a companion paper (DeCoursey & Cherny, 1996. J. Membrane Biol. 152:2). The ion channels in THP-1 cells are compared with channels described in other macrophage-related cells. Profound changes in ion channel expression that occur during differentiation of THP-1 cells are described in a companion paper (DeCoursey et al., 1996. J. Membrane Biol. 152:2). Received: 19 September 1995/Revised: 14 March 1996  相似文献   
69.
为了明确具有极强抗虫特性的‘草原4号紫花苜蓿’(Medicago sativa L.‘Caoyuan No.4’) 营养器官的解剖特征,该研究选择具有抗蓟马特性较强的‘草原2号杂花苜蓿’(Medicago varia Martin.‘Caoyuan No.2’)为对照,采用显微镜观察比较两品种的根、茎、叶解剖结构特征,为揭示‘草原4号紫花苜蓿’ 抗蓟马特性提供理论依据。结果显示:(1)‘草原4号紫花苜蓿’根部解剖结构的皮层薄壁细胞厚度、内皮层厚度、形成层厚度、木质部厚度和木射线宽度等5个指标均极显著高于(P<0.01)‘草原2号杂花苜蓿’,其中木射线宽度(159.37 μm)是‘草原2号杂花苜蓿’的1.82倍。(2)‘草原4号紫花苜蓿’的茎部厚角组织厚度(21.4 μm)极显著高于‘草原2号杂花苜蓿’(P<0.01),而韧皮部宽度、髓直径却均极显著低于‘草原2号杂花苜蓿’(P<0.01)。(3)‘草原4号紫花苜蓿’叶片解剖构造的7个指标均极显著高于‘草原2号杂花苜蓿’(P<0.01),其中栅栏组织层数(2~3层)极明显地高于‘草原2号杂花苜蓿’(1~2层)。研究表明,‘草原4号紫花苜蓿’的组织结构特征具有明显的抗虫特征,且其组织的抗虫特征比‘草原2号杂花苜蓿’更为突出。  相似文献   
70.
We determined the kind of seed dormancy in Schisandra arisanensis, an ANA grade ([A]mborellales [N]ymphaeales [A]ustrobaileyales) angiosperm with medicinal value. Seeds have small underdeveloped embryos, and following seed maturity their length increased approximately 360% before radicle emergence. Germination was delayed 6–8 weeks, and the percentage and rate were much higher at 15/6, 20/10 and 25/15°C than at 30/20°C. For seeds incubated at 5/5°C (8 weeks) → 15/6°C (4 weeks) → 20/10°C (8 weeks) → 25/15°C (12 weeks) → 20/10°C (5 weeks), embryos grew at 15/6°C → 20/10°C, and almost all seeds that germinated (89%) did so at 20/10°C → 25/15°C. When seeds were incubated in a complementary temperature sequence, 25/15°C (12 weeks) → 20/10°C (8 weeks) → 15/6°C (4 weeks) → 5/5°C (9 weeks) → 15/6°C (4 weeks), embryos grew at 25/15°C → 20/10°C. Nearly all seeds that germinated (93%) did so at 25/15°C → 20/10°C and at 15/6°C following 9 weeks at 5/5°C. Based on the temperature requirements for embryo growth and seed germination, seeds of this species have non‐deep simple morphophysiological dormancy (C1bB).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号