首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   7篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2017年   2篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   5篇
  2011年   5篇
  2010年   4篇
  2009年   4篇
  2008年   4篇
  2007年   8篇
  2006年   7篇
  2005年   8篇
  2004年   5篇
  2003年   4篇
  2002年   2篇
  2001年   3篇
  2000年   8篇
  1999年   7篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1994年   2篇
  1992年   6篇
  1991年   2篇
  1990年   3篇
  1987年   1篇
  1983年   1篇
  1980年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有113条查询结果,搜索用时 15 毫秒
31.
Integrin-induced adhesion leads to cytoskeletal reorganizations, cell migration, spreading, proliferation, and differentiation. The details of the signaling events that induce these changes in cell behavior are not well understood but they appear to involve activation of Rho family members which activate signaling molecules such as tyrosine kinases, serine/threonine kinases, and lipid kinases. The result is the formation of focal complexes, focal adhesions, and bundles and networks of actin filaments that allow the cell to spread. The present study shows that mu-calpain is active in adherent cells, that it cleaves proteins known to be present in focal complexes and focal adhesions, and that overexpression of mu-calpain increased the cleavage of these proteins, induced an overspread morphology and induced an increased number of stress fibers and focal adhesions. Inhibition of calpain with membrane permeable inhibitors or by expression of a dominant negative form of mu-calpain resulted in an inability of cells to spread or to form focal adhesions, actin filament networks, or stress fibers. Cells expressing constitutively active Rac1 could still form focal complexes and actin filament networks (but not focal adhesions or stress fibers) in the presence of calpain inhibitors; cells expressing constitutively active RhoA could form focal adhesions and stress fibers. Taken together, these data indicate that calpain plays an important role in regulating the formation of focal adhesions and Rac- and Rho-induced cytoskeletal reorganizations and that it does so by acting at sites upstream of both Rac1 and RhoA.  相似文献   
32.
Amyloid beta peptide (Abeta), the pathogenic agent of Alzheimer's disease (AD), is a physiological metabolite constantly anabolized and catabolized in the brain. We previously demonstrated that neprilysin is the major Abeta-degrading enzyme in vivo. To investigate whether or not manipulation of neprilysin activity in the brain would be an effective strategy for regulating Abeta levels, we expressed neprilysin in primary cortical neurons using a Sindbis viral vector and examined the effect on Abeta metabolism. The corresponding recombinant protein, expressed in the cell bodies and processes, exhibited thiorphan-sensitive endopeptidase activity, whereas a mutant neprilysin with an amino acid substitution in the active site did not show any such activity. Expression of the wild-type neprilysin, but not the mutant, led to significant decreases in both the Abeta40 and 42 levels in the culture media in a dose-dependent manner. Moreover, neprilysin expression also resulted in reducing cell-associated Abeta, which could be more neurotoxic than extracellular Abeta. These results indicate that the manipulation of neprilysin activity in neurons, the major source of Abeta in the brain, would be a relevant strategy for controlling the Abeta levels and thus the Abeta-associated pathology in brain tissues.  相似文献   
33.
Although the calpain-calpastatin system has been implicated in a number of pathological conditions, its normal physiological role remains largely unknown. To investigate the functions of this system, we generated conventional and conditional calpain-2 knockout mice. The conventional calpain-2 knockout embryos died around embryonic day 15, preceded by cell death associated with caspase activation and DNA fragmentation in placental trophoblasts. In contrast, conditional knockout mice in which calpain-2 is expressed in the placenta but not in the fetus were spared. These results suggest that calpain-2 contributes to trophoblast survival via suppression of caspase activation. Double-knockout mice also deficient in calpain-1 and calpastatin resulted in accelerated and rescued embryonic lethality, respectively, suggesting that calpain-1 and -2 at least in part share similar in vivo functions under the control of calpastatin. Triple-knockout mice exhibited early embryonic lethality, a finding consistent with the notion that this protease system is vital for embryonic survival.  相似文献   
34.
35.
Amyloid beta peptide (Aβ) is not only a major constituent of extracellular fibrillary pathologies in Alzheimer's disease (AD) brains, but is also physiologically produced and metabolized in neurons. This fact led us to the notion that an age-related decrease in Aβ catabolism may contribute to the molecular pathogenesis of AD, providing a rationale for seeking proteolytic enzymes that degrade Aβ in the brain. Our recent studies have demonstrated that neprilysin is the most potent Aβ-degrading enzyme in vivo. Deficiency of endogenous neprilysin elevates the level of Aβ in brains of neprilysin-knockout mice in a gene dose-dependent manner, and an age-associated decline of neprilysin occurs in several regions of mouse brain. Neuropathological alterations in these same regions have been implicated in cognitive impairments of AD patients at an early stage of the disease. Furthermore, the level of neprilysin mRNA has been found to be significantly and selectively reduced in the hippocampus and temporal cortex of AD patients. A clarification of the role played by decreased neprilysin activity in the pathogenesis of AD has opened up the possibility of neprilysin up-regulation as a novel preventive and therapeutic approach to AD. Since the expression level and activity of neprilysin are likely to be regulated by neuropeptides and their receptors, non-peptidic agonists for these receptors might be effective agents to maintain a sufficient level of Aβ catabolism in brains of the elderly.In addition to Aβ deposits, intraneuronal fibrillary lesions, such as neurofibrillary tangles, are also a pathological hallmark of AD, and the extent of the resultant cytoskeletal disruptions may be dependent upon the activity levels of proteolytic enzymes. Among proteases for which major cytoskeletal components are good substrates, calpains were shown to participate in excitotoxic stress-induced neuritic degeneration in our recent analysis using genetically engineered mice. Moreover, we have found that this pathology can be reduced by controlling the activity of an endogenous calpain inhibitor known as calpastatin, providing a possible approach for the treatment of diverse neurodegenerative disorders, including AD.  相似文献   
36.
Compelling evidence suggests that N-terminally truncated and pyroglutamyl-modified amyloid-beta (Abeta) peptides play a major role in the development of Alzheimer's disease. Posttranslational formation of pyroglutamic acid (pGlu) at position 3 or 11 of Abeta implies cyclization of an N-terminal glutamate residue rendering the modified peptide degradation resistant, more hydrophobic, and prone to aggregation. Previous studies using artificial peptide substrates suggested the potential involvement of the enzyme glutaminyl cyclase in generation of pGlu-Abeta. Here we show that glutaminyl cyclase (QC) catalyzes the formation of Abeta 3(pE)-40/42 after amyloidogenic processing of APP in two different cell lines, applying specific ELISAs and Western blotting based on urea-PAGE. Inhibition of QC by the imidazole derivative PBD150 led to a blockage of Abeta 3(pE)-42 formation. Apparently, the QC-catalyzed formation of N-terminal pGlu is favored in the acidic environment of secretory compartments, which is also supported by double-immunofluorescence labeling of QC and APP revealing partial colocalization. Finally, initial investigations focusing on the molecular pathway leading to the generation of truncated Abeta peptides imply an important role of the amino acid sequence near the beta-secretase cleavage site. Introduction of a single-point mutation, resulting in an amino acid substitution, APP(E599Q), i.e., at position 3 of Abeta, resulted in significant formation of Abeta 3(pE)-40/42. Introduction of the APP KM595/596NL "Swedish" mutation causing overproduction of Abeta, however, surprisingly diminished the concentration of Abeta 3(pE)-40/42. The study provides new cell-based assays for the profiling of small molecule inhibitors of QC and points to conspicuous differences in processing of APP depending on sequence at the beta-secretase cleavage site.  相似文献   
37.
Cerebral deposition of beta-amyloid (Abeta) peptides is a pathological hallmark of Alzheimer disease. Intramembranous proteolysis of amyloid precursor protein by a multiprotein gamma-secretase complex generates Abeta. Previously, it was reported that CD147, a glycoprotein that stimulates production of matrix metalloproteinases (MMPs), is a subunit of gamma-secretase and that the levels of secreted Abeta inversely correlate with CD147 expression. Here, we show that the levels and localization of CD147 in fibroblasts, as well as postnatal expression and distribution in brain, are distinct from those of integral gamma-secretase subunits. Notably, we show that although depletion of CD147 increased extracellular Abeta levels in intact cells, membranes isolated from CD147-depleted cells failed to elevate Abeta production in an in vitro gamma-secretase assay. Consistent with an extracellular source that modulates Abeta metabolism, synthetic Abeta was degraded more rapidly in the conditioned medium of cells overexpressing CD147. Moreover, modulation of CD147 expression had no effect on epsilon-site cleavage of amyloid precursor protein and Notch1 receptor. Collectively, our results demonstrate that CD147 modulates Abeta levels not by regulating gamma-secretase activity, but by stimulating extracellular degradation of Abeta. In view of the known function of CD147 in MMP production, we postulate that CD147 expression influences Abeta levels by an indirect mechanism involving MMPs that can degrade extracellular Abeta.  相似文献   
38.
Alzheimer's beta-secretase (BACE1) is a membrane-bound protease that cleaves the amyloid precursor protein (APP) in the trans-Golgi network, an initial step in the pathogenesis of Alzheimer's disease. Although BACE1 is distributed among various tissues including brain, its physiological substrate other than APP have not been identified. We have recently found that when BACE1 was overexpressed in COS cells together with α2,6-sialyltransferase (ST6Gal I), the secretion of ST6Gal I markedly increased, suggesting that BACE1 cleaves ST6Gal I as a physiological substrate. Thus BACE1 is the first identified protease that is responsible for the cleavage and secretion of glycosyltransferases. Published in 2004. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
39.
A subset of Alzheimer disease cases is caused by autosomal dominant mutations in genes encoding the amyloid beta-protein precursor or presenilins. Whereas some amyloid beta-protein precursor mutations alter its metabolism through effects on Abeta production, the pathogenic effects of those that alter amino acid residues within the Abeta sequence are not fully understood. Here we examined the biophysical effects of two recently described intra-Abeta mutations linked to early-onset familial Alzheimer disease, the D7N Tottori-Japanese and H6R English mutations. Although these mutations do not affect Abeta production, synthetic Abeta(1-42) peptides carrying D7N or H6R substitutions show enhanced fibril formation. In vitro analysis using Abeta(1-40)-based mutant peptides reveal that D7N or H6R mutations do not accelerate the nucleation phase but selectively promote the elongation phase of amyloid fibril formation. Notably, the levels of protofibrils generated from D7N or H6R Abeta were markedly inhibited despite enhanced fibril formation. These N-terminal Abeta mutations may accelerate amyloid fibril formation by a unique mechanism causing structural changes of Abeta peptides, specifically promoting the elongation process of amyloid fibrils without increasing metastable intermediates.  相似文献   
40.
Glucosyltransferase (GTF) plays an important role in the development of dental caries. We examined the possible presence of self-inhibitory segments within the enzyme molecule for the purpose of developing anticaries measures through GTF inhibition. Twenty-two synthetic peptides derived from various regions presumably responsible for insoluble-glucan synthesis were studied with respect to their effects on catalytic activity. One of them, which is identical in amino acid sequence to residues 1176-1194, significantly and specifically inhibited both sucrose hydrolysis and glucosyl transfer to glucan by GTF-I. Double-reciprocal analysis revealed that the inhibition is noncompetitive. Scramble peptides, composed of the identical amino acids in randomized sequence, had no effect on GTF-I activity. Furthermore, the peptide is tightly bound to the enzyme once complexed, even in the presence of sodium dodecyl sulfate (SDS). Kinetic analysis using an optical evanescent resonant mirror cuvette system demonstrated that the enzyme-peptide interaction was biphasic. These results indicate that the peptide directly interacts with the enzyme with high affinity and inhibits its activity in a sequence-specific manner. This peptide itself could possibly be an effective agent for prevention of dental caries, although its effectiveness may be improved by further modification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号