首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121563篇
  免费   7734篇
  国内免费   91篇
  129388篇
  2012年   12627篇
  2011年   14360篇
  2010年   2050篇
  2009年   958篇
  2008年   11507篇
  2007年   12126篇
  2006年   11389篇
  2005年   10911篇
  2004年   10737篇
  2003年   9924篇
  2002年   8844篇
  2001年   6852篇
  2000年   8969篇
  1999年   3358篇
  1998年   355篇
  1997年   251篇
  1996年   134篇
  1995年   156篇
  1994年   139篇
  1993年   128篇
  1992年   125篇
  1991年   103篇
  1990年   110篇
  1989年   86篇
  1988年   96篇
  1987年   75篇
  1986年   71篇
  1985年   58篇
  1984年   49篇
  1983年   77篇
  1982年   65篇
  1981年   39篇
  1980年   46篇
  1974年   29篇
  1972年   32篇
  1971年   41篇
  1970年   36篇
  1969年   31篇
  1959年   133篇
  1958年   272篇
  1957年   279篇
  1956年   225篇
  1955年   240篇
  1954年   226篇
  1953年   153篇
  1952年   162篇
  1951年   110篇
  1950年   102篇
  1949年   44篇
  1948年   47篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
The present study examined the competence of oocytes from bovine ovaries stored at low temperatures for at least 1 day, which is the necessary time period to complete inspection for bovine spongiform encephalopathy. Storage of ovaries at 10 degrees C for 24 h did not affect oocyte maturation (68% versus 68%) or the potential of oocytes to develop into day 8 blastocysts after in vitro fertilization (25% versus 27%), parthenogenetic activation (19% versus 25%), or somatic cell nucleus transfer (27% versus 32%) compared with controls. In vitro-fertilized and parthenogenetic oocytes from ovaries stored at 10 degrees C for 48 h had a significantly decreased maturation rate and developmental potential, but nucleus-transferred oocytes that received cultured cumulus cells did not (27% versus 32%). Thus, bovine ovaries can be stored at 10 degrees C for at least 24 h without decreasing oocyte maturation competence or the developmental potential of in vitro-fertilized, parthenogenetically activated, and somatic cell nucleus-transferred oocytes, at least to the blastocyst stage. The present study provides valuable information with regard to removing bovine ovaries from abattoirs after testing for bovine spongiform encephalopathy.  相似文献   
102.
Peptide:N-glycanase (PNGase) is the deglycosylating enzyme, which releases N-linked glycan chains from N-linked glycopeptides and glycoproteins. Recent studies have revealed that the cytoplasmic PNGase is involved in the degradation of misfolded/unassembled glycoproteins. This enzyme has a Cys, His, and Asp catalytic triad, which is required for its enzymatic activity and can be inhibited by "free" N-linked glycans. These observations prompted us to investigate the possible use of haloacetamidyl derivatives of N-glycans as potent inhibitors and labeling reagents of this enzyme. Using a cytoplasmic PNGase from budding yeast (Png1), Man9GlcNAc2-iodoacetoamide was shown to be a strong inhibitor of this enzyme. The inhibition was found to be through covalent binding of the carbohydrate to a single Cys residue on Png1, and the binding was highly selective. The mutant enzyme in which Cys191 of the catalytic triad was changed to Ala did not bind to the carbohydrate probe, suggesting that the catalytic Cys is the binding site for this compound. Precise determination of the carbohydrate attachment site by mass spectrometry clearly identified Cys191 as the site of covalent attachment. Molecular modeling of N,N'-diacetylchitobiose (chitobiose) binding to the protein suggests that the carbohydrate binding site is distinct from but adjacent to that of Z-VAD-fmk, a peptide-based inhibitor of this enzyme. These results suggest that cytoplasmic PNGase has a separate binding site for chitobiose and other carbohydrates, and haloacetamide derivatives can irreversibly inhibit that catalytic Cys in a highly specific manner.  相似文献   
103.
104.
Autism spectrum disorders (henceforth autism) are diagnosed in around 1% of the population [1]. Familial liability confers risk for a broad spectrum of difficulties including the broader autism phenotype (BAP) [2, 3]. There are currently no reliable predictors of autism in infancy, but characteristic behaviors emerge during the second year, enabling diagnosis after this age [4, 5]. Because indicators of brain functioning may be sensitive predictors, and atypical eye contact is characteristic of the syndrome [6-9] and the BAP [10, 11], we examined whether neural sensitivity to eye gaze during infancy is associated with later autism outcomes [12, 13]. We undertook a prospective longitudinal study of infants with and without familial risk for autism. At 6-10 months, we recorded infants' event-related potentials (ERPs) in response to viewing faces with eye gaze directed toward versus away from the infant [14]. Longitudinal analyses showed that characteristics of ERP components evoked in response to dynamic eye gaze shifts during infancy were associated with autism diagnosed at 36 months. ERP responses to eye gaze may help characterize developmental processes that lead to later emerging autism. Findings also elucidate the mechanisms driving the development of the social brain in infancy.  相似文献   
105.
A subset of genes, known as imprinted genes, is present in the mammalian genome. Genomic imprinting governs the monoallelic expression of these genes, depending on whether the gene was inherited from the sperm or the egg. This parent-of-origin specific gene expression is generally dependent on the epigenetic modification, DNA methylation, and the DNA methylation status of CpG dinucleotides residing in loci known as differentially methylated regions (DMRs). The enzymatic machinery responsible for the addition of methyl (-CH(3)) groups to the cytosine residue in the CpG dinucleotides are known as DNA methyltransferases (DNMTs). Correct establishment and maintenance of methylation patterns at imprinted genes has been associated with placental function and regulation of embryonic/fetal development. Much work has been carried out on imprinted genes in mouse and human; however, little is known about the methylation dynamics in the bovine oocyte. The primary objective of the present study was to characterize the establishment of methylation at maternally imprinted genes in bovine growing oocytes and to determine if the expression of the bovine DNMTs-DNMT3A, DNMT3B, and DNMT3L-was coordinated with DNA methylation during oocyte development. To this end, a panel of maternally imprinted genes was selected (SNRPN, MEST, IGF2R, PEG10, and PLAGL1) and putative DMRs for MEST, IGF2R, PEG10, and PLAGL1 were identified within the 5' regions for each gene; the SNRPN DMR has been reported previously. Conventional bisulfite sequencing revealed that methylation marks were acquired at all five DMRs investigated in an oocyte size-dependent fashion. This was confirmed for a selection of genes using pyrosequencing analysis. Furthermore, mRNA expression and protein analysis revealed that DNMT3A, DNMT3B, and DNMT3L are also present in the bovine oocyte during its growth phase. This study demonstrates for the first time that an increase in bovine imprinted gene DMR methylation occurs during oocyte growth, as is observed in mouse.  相似文献   
106.
A novel serum chitinase that is expressed in bovine liver   总被引:2,自引:0,他引:2  
Chitinases are ubiquitous chitin-fragmenting hydrolases. They are synthesized by a vast array of organisms, including those not composed of chitin. Here, we describe a novel serum chitinase (chitin-binding protein b04, CBPb04), which is expressed in bovine liver. Although CBPb04 is secreted as an endocrine chitinase, it shows higher homology with human gastrointestinal tract exocrine chitinase (AMCase) than with macrophage endocrine chitinase (human chitotriosidase). This suggests that cows have a specific defense against chitin-containing microorganisms. CBPb04 mRNA is expressed in hepatocytes. This is the first report of a hepatogenic mammalian chitinase.  相似文献   
107.
The microbial degradation of lignocellulose biomass is not only an important biological process but is of increasing industrial significance in the bioenergy sector. The mechanism by which the plant cell wall, an insoluble composite structure, activates the extensive repertoire of microbial hydrolytic enzymes required to catalyze its degradation is poorly understood. Here we have used a transposon mutagenesis strategy to identify a genetic locus, consisting of two genes that modulate the expression of xylan side chain-degrading enzymes in the saprophytic bacterium Cellvibrio japonicus. Significantly, the locus encodes a two-component signaling system, designated AbfS (sensor histidine kinase) and AbfR (response regulator). The AbfR/S two-component system is required to activate the expression of the suite of enzymes that remove the numerous side chains from xylan, but not the xylanases that hydrolyze the beta1,4-linked xylose polymeric backbone of this polysaccharide. Studies on the recombinant sensor domain of AbfS (AbfS(SD)) showed that it bound to decorated xylans and arabinoxylo-oligosaccharides, but not to undecorated xylo-oligosaccharides or other plant structural polysaccharides/oligosaccharides. The crystal structure of AbfS(SD) was determined to a resolution of 2.6A(.) The overall fold of AbfS(SD) is that of a classical Per Arndt Sim domain with a central antiparallel four-stranded beta-sheet flanked by alpha-helices. Our data expand the number of molecules known to bind to the sensor domain of two-component histidine kinases to include complex carbohydrates. The biological rationale for a regulatory system that induces enzymes that remove the side chains of xylan, but not the hydrolases that cleave the backbone of the polysaccharide, is discussed.  相似文献   
108.
Itoh T  Fukuda M 《Autophagy》2011,7(9):1080-1081
Atg8 and its homologs are essential for autophagosome formation in various species. In animal cells, Atg8 homologs have an additional function in clearance of damaged organelles and bacteria, acting as a landmark for selective autophagy. We have recently shown that OATL1, a Rab-GTPase-activating protein (Rab-GAP), is a novel binding partner of Atg8 homologs in mammalian cells, but to our surprise, it is not a substrate of autophagy. Further analysis indicates that OATL1 is involved in the fusion between autophagosomes and lysosomes through its GAP activity and its Atg8 homolog binding activity. Our findings suggest a novel function of Atg8 homologs as a scaffold for signal transduction that regulates autophagosomal maturation.  相似文献   
109.
110.
Little information exists on mixed-species groups between primates and other mammals in Neotropical forests. In this paper, we describe three such associations observed during an extensive large-vertebrate survey in central Amazonia, Brazil. Mixed-species groups between a primate species and another mammal were observed on seven occasions between squirrel monkeys (Saimiri cf. ustus) and either South American coatis (Nasua nasua) or tayras (Eira barbara) and between brown capuchins (Cebus apella) and coatis. All associations were restricted to floodplain forest during its dry stage. We suggest that the associations involving the coatis are connected to foraging and vigilance but may be induced by a common alternative food resource at a time of food shortage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号