首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   383854篇
  免费   34900篇
  国内免费   959篇
  2018年   13886篇
  2017年   12618篇
  2016年   10350篇
  2015年   4609篇
  2014年   5200篇
  2013年   7052篇
  2012年   11828篇
  2011年   20400篇
  2010年   16888篇
  2009年   13022篇
  2008年   16655篇
  2007年   18349篇
  2006年   7460篇
  2005年   7428篇
  2004年   7753篇
  2003年   7616篇
  2002年   7240篇
  2001年   17515篇
  2000年   17614篇
  1999年   13339篇
  1998年   3884篇
  1997年   4158篇
  1996年   3873篇
  1995年   3499篇
  1994年   3483篇
  1993年   3574篇
  1992年   10417篇
  1991年   10359篇
  1990年   9822篇
  1989年   9655篇
  1988年   9020篇
  1987年   8376篇
  1986年   7562篇
  1985年   7412篇
  1984年   5833篇
  1983年   5095篇
  1982年   3617篇
  1981年   3186篇
  1980年   3031篇
  1979年   5356篇
  1978年   4126篇
  1977年   3751篇
  1976年   3306篇
  1975年   3786篇
  1974年   3948篇
  1973年   3895篇
  1972年   3655篇
  1971年   3449篇
  1970年   2826篇
  1969年   2742篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
241.
242.
243.
Uncoupling protein 3L, uncoupling protein 1 and the mitochondrial oxoglutarate carrier were expressed in Saccharomyces cerevisae. Effects on different parameters related to the energy expenditure were studied. Both uncoupling protein 3L and uncoupling protein 1 reduced the growth rate by 49% and 32% and increased the whole yeast O2 consumption by 31% and 19%, respectively. In isolated mitochondria, uncoupling protein 1 increased the state 4 respiration by 1.8-fold, while uncoupling protein 3L increased the state 4 respiration by 1.2-fold. Interestingly, mutant uncoupling protein 1 carrying the H145Q and H147N mutations, previously shown to markedly decrease the H+ transport activity of uncoupling protein 1 when assessed using a proteoliposome system (Bienengraeber et al. (1998) Biochem. 37, 3-8), uncoupled the mitochondrial respiration to almost the same degree as wild-type uncoupling protein 1. Thus, absence of this histidine pair in uncoupling protein 2 and uncoupling protein 3 does not by itself rule out the possibility that these carriers have an uncoupling function. The oxoglutarate carrier had no effect on any of the studied parameters. In summary, a discordance exists between the magnitude of effects of uncoupling protein 3L and uncoupling protein 1 in whole yeast versus isolated mitochondria, with uncoupling protein 3L having greater effects in whole yeast and a smaller effect on the state 4 respiration in isolated mitochondria. These findings suggest that uncoupling protein 3L, like uncoupling protein 1, has an uncoupling activity. However, the mechanism of action and/or regulation of the activity of uncoupling protein 3L is likely to be different.  相似文献   
244.
245.
246.
The nitrogen-15 chemical shift of the N1 (tau)-nitrogen of 15N-labeled histidine and the half-height line widths of proton-coupled resonances of the delta- and omega,omega'-nitrogens of 15N-labeled arginine and of the alpha-nitrogens of 15N-labeled alanine and proline were measured in intact mycelia of Neurospora crassa to obtain to estimates of intracellular pH. For intracellular 15N-labeled histidine, the N1 (tau)-nitrogen chemical shift was 200.2 ppm. In vitro measurements showed that the chemical shift was slightly affected by the presence of phosphate, with which the basic amino acids may be associated in vivo. These considerations indicate a pH of 5.7-6.0 for the environment of intracellular histidine. The half-height line widths of the delta- and omega,omega'-nitrogens of [15N]arginine were 15 and 26 Hz, respectively. In vitro studies showed that these line widths also are influenced by the presence of phosphate, and, after suitable allowance for this, the line widths indicate pH 6.1-6.5 for intracellular arginine. The half-height line widths for intracellular alanine and proline were 17 and 12 Hz, respectively, which are consistent with an intracellular pH of 7.1-7.2. Pools of histidine and arginine are found principally in the vacuole of Neurospora, most likely in association with polyphosphates. Proline and alanine are cytoplasmic. The results reported here are consistent with these localizations and indicate that the vacuolar pH is 6.1 +/- 0.4 while the cytoplasmic pH is 7.15 +/- 0.10. Comparisons of these estimates with those obtained by other techniques and their implications for vacuolar function are discussed.  相似文献   
247.
The cytochrome P-450-mediated desaturation of valproic acid (VPA) to its hepatotoxic metabolite, 2-n-propyl-4-pentenoic acid (4-ene-VPA), was examined in liver microsomes from rats, mice, rabbits and humans. The highest substrate turnover was found with microsomes from rabbits (44.2 +/- 2.7 pmol of product/nmol P-450/15 min), while lower activities were observed in preparations from human, mouse, and rat liver, in that order. Pretreatment of animals with phenobarbital led to enhanced rates of formation of 4-ene-VPA in vitro and yielded induction ratios for desaturation ranging from 2.5 to 8.4, depending upon the species. Comparative studies in the rat showed that phenobarbital is a more potent inducer of olefin formation than either phenytoin or carbamazepine. The mechanism of the desaturation reaction was studied by inter- and intramolecular deuterium isotope effect experiments, which demonstrated that removal of a hydrogen atom from the subterminal C-4 position of VPA is rate limiting in the formation of both 4-ene- and 4-hydroxy-VPA. Hydroxylation at the neighboring C-5 position, on the other hand, was highly sensitive to deuterium substitution at that site, but not to deuteration at C-4. Based on these findings, it is proposed that 4-ene- and 4-hydroxy-VPA are products of a common P-450-dependent metabolic pathway, in which a carbon-centered free radical at C-4 serves as the key intermediate. 5-Hydroxy-VPA, in contrast, derives from an independent hydroxylation reaction.  相似文献   
248.
249.
The ilvI and ilvH gene products were identified physically by electrophoretic analysis of in vivo-labelled polypeptides produced in minicells from plasmids carrying the wild-type ilvIH operon of Escherichia coli K-12 and derivatives of it. An analysis of the distribution of methionine residues in the amino-terminal portion of micro-quantities of the ilvI product eluted from gel showed that the translational start of the ilvI gene is the promoter-proximal one of three putative methionine codons predicted from the DNA sequence.  相似文献   
250.
Recent studies have revealed an unexpected synergism between two seemingly unrelated protein families: CCN matricellular proteins and the tumor necrosis factor (TNF) family of cytokines. CCN proteins are dynamically expressed at sites of injury repair and inflammation, where TNF cytokines are also expressed. Although TNFα is an apoptotic inducer in some cancer cells, it activates NFκB to promote survival and proliferation in normal cells, and its cytotoxicity requires inhibition of de novo protein synthesis or NFκB signaling. The presence of CCN1, CCN2, or CCN3 overrides this requirement and unmasks the apoptotic potential of TNFα, thus converting TNFα from a proliferation-promoting protein into an apoptotic inducer. These CCN proteins also enhance the cytotoxicity of other TNF cytokines, including LTα, FasL, and TRAIL. Mechanistically, CCNs function through integrin α6β1 and the heparan sulfate proteoglycan (HSPG) syndecan-4 to induce reactive oxygen species (ROS) accumulation, which is essential for apoptotic synergism. Mutant CCN1 proteins defective for binding α6β1-HSPGs are unable to induce ROS or apoptotic synergism with TNF cytokines. Further, knockin mice that express an α6β1-HSPG-binding defective CCN1 are blunted in TNFα- and Fas-mediated apoptosis, indicating that CCN1 is a physiologic regulator of these processes. These findings implicate CCN proteins as contextual regulators of the inflammatory response by dictating or enhancing the cytotoxicity of TNFα and related cytokines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号