首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   790篇
  免费   36篇
  2021年   10篇
  2020年   4篇
  2019年   7篇
  2018年   10篇
  2017年   7篇
  2016年   10篇
  2015年   18篇
  2014年   23篇
  2013年   34篇
  2012年   40篇
  2011年   46篇
  2010年   29篇
  2009年   25篇
  2008年   69篇
  2007年   69篇
  2006年   87篇
  2005年   70篇
  2004年   58篇
  2003年   61篇
  2002年   58篇
  2001年   4篇
  2000年   4篇
  1999年   6篇
  1998年   5篇
  1997年   7篇
  1996年   4篇
  1995年   4篇
  1994年   7篇
  1993年   2篇
  1992年   1篇
  1991年   5篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1985年   3篇
  1984年   1篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
  1975年   5篇
  1974年   4篇
  1973年   2篇
  1972年   2篇
排序方式: 共有826条查询结果,搜索用时 953 毫秒
51.
OBJECTIVES: Surgical removal of a very large goiter may traumatize adjacent anatomical structures. The manipulations that involve superior cervical ganglia may alter melatonin secretion. To test this hypothesis we decided to study diurnal serum melatonin profiles in patients with a very large goiter before and after the surgery. MATERIAL AND METHODS:The study was performed on 10 women (mean age-46.5+/-1.6 years; mean+/-SEM; range 39-54 years) with very large non-toxic nodular goiter (mean thyroid volume-125.8+/-25.9 cm (3); mean+/-SEM; range 82.6-326.7 cm(3)). Diurnal serum melatonin profiles were estimated two days before the operation and 10 days after the surgery. Blood samples were collected at 08:00, 12:00, 16:00, 20:00, 22:00, 24:00, 02:00, 04:00, 06:00 and 08:00 h. Melatonin concentration was measured using RIA kit. RESULTS: Nocturnal serum melatonin concentrations (at 24, 02, and 04 hours) were significantly higher after the surgery than before the operation. CONCLUSIONS: Very large goiter may compress the superior cervical ganglia altering indirectly the melatonin synthesis. It cannot be excluded, however, that the presence of the large goiter in some other way affects melatonin secretion.  相似文献   
52.
Nuclear-encoded mitochondrial precursor proteins are proteolytically processed inside the mitochondrion after import. The general mitochondrial processing activity in plant mitochondria has been shown to be integrated into the cytochrome bc1 complex of the respiratory chain. Here we investigate the occurrence of an additional, matrix-located processing activity by incubation of the precursors of the soybean mitochondrial proteins, alternative oxidase, the FAd subunit of the ATP synthetase and the tobacco F1 subunit of the ATP synthase, with the membrane and soluble components of mitochondria isolated from soybean cotyledons and spinach leaves. A matrix-located peptidase specifically processed the precursors to the predicted mature form in a reaction which was sensitive to orthophenanthroline, a characteristic inhibitor of mitochondrial processing peptidase (MPP). The specificity of the matrix peptidase was illustrated by the inhibition of processing of the alternative oxidase precursor in both soybean and spinach matrix extracts upon altering a single amino acid residue in the targeting presequence (-2 Arg to Gly). Additionally, there was no evidence for general proteolysis of precursor proteins incubated with the matrix. The purity of the matrix fractions was ascertained by spectrophotometric and immunological analyses. The results demonstrate that there is a specific processing activity in the matrix of soybean and spinach in addition to the previously well characterized membrane-bound MPP integrated into the cytochrome bc1 complex of the respiratory chain.  相似文献   
53.
Infectious diseases still remain the main cause of human premature deaths; especially in developing countries. The emergence and spread of pathogenic bacteria resistant to many antibiotics (multidrug-resistant strains) have created the need for the development of novel therapeutic agents. Only two new classes of antibiotics of novel mechanisms of action (linezolid and daptomycin) have been introduced into the market during the last three decades. The recent progress in molecular biology and bacterial genome analysis has had an enormous impact on antibacterial drug research. This review presents new achievements in searching a new bacterial essential genes, a potential targets for antibacterial drugs. Application of metagenomics strategy is also shown. Some recent technologies aimed at development of anti-pathogenic drugs such as inhibitors of quorum sensing process or histidine kinases are also discussed. Extensive research efforts have provided many details concerning structure of bacterial proteins playing an important role in pathogenesis such as adherence proteins or toxins, what allowed searching for antitoxin drugs or drugs interfering with bacterial adhesion. As an example, the review focuses on anthrax therapies under development. Additionally, the article presents the progress in phage therapy; using bacteriophages or their products such as lysins in antibacterial therapy.  相似文献   
54.
A novel 120 kDa actin-binding protein (ApABP-F1) was found in Amoeba proteus. It was distributed throughout the cytoplasm, mainly in the subplasma membrane and perinuclear-nuclear areas, enriched in actin. The full-length cDNA of ApABP consisted of 2672 nucleotides with an open reading frame of 878 amino acids, giving a ~95 kDa protein with a theoretical pI value of 5.11. It had a novel domain organization pattern: the N terminus (residues 1-104) contained 1 calponin-homology (CH) domain, followed by only 1 region that was homologous to the filamin repeat (FR, residues 209-324), and a central region (residues 344-577) exhibiting a very high probability of coiled-coil formation, probably engaged in the observed protein dimerization. A phylogenetic tree constructed for CH domains from 25 various proteins revealed that the CH domain of ApABP was most related to that of the hypothetical mouse KIAA0903-like protein, whereas not much relationship to either filamins or the gelation factor (ABP-120) of Dictyostelium discoideum and Entamoeba histolytica was found.  相似文献   
55.
Emerging fungal and oomycete pathogens are increasingly threatening animals and plants globally. Amongst oomycetes, Saprolegnia species adversely affect wild and cultivated populations of amphibians and fish, leading to substantial reductions in biodiversity and food productivity. With the ban of several chemical control measures, new sustainable methods are needed to mitigate Saprolegnia infections in aquaculture. Here, PhyloChip-based community analyses showed that the Pseudomonadales, particularly Pseudomonas species, represent one of the largest bacterial orders associated with salmon eggs from a commercial hatchery. Among the Pseudomonas species isolated from salmon eggs, significantly more biosurfactant producers were retrieved from healthy salmon eggs than from Saprolegnia-infected eggs. Subsequent in vivo activity bioassays showed that Pseudomonas isolate H6 significantly reduced salmon egg mortality caused by Saprolegnia diclina. Live colony mass spectrometry showed that strain H6 produces a viscosin-like lipopeptide surfactant. This biosurfactant inhibited growth of Saprolegnia in vitro, but no significant protection of salmon eggs against Saprolegniosis was observed. These results indicate that live inocula of aquatic Pseudomonas strains, instead of their bioactive compound, can provide new (micro)biological and sustainable means to mitigate oomycete diseases in aquaculture.  相似文献   
56.
Although overt diurnal rhythms of behavior do not begin until well after birth, molecular studies suggest that the circadian clock may begin much earlier at a cellular level: mouse embryonic fibroblasts, for example, already possess robust clocks. By multiple criteria, we found no circadian clock present in mouse embryonic stem cells. Nevertheless, upon their differentiation into neurons, circadian gene expression was observed. In the first steps along the pathway from ES cells to neurons, a neural precursor cell (NPC) line already showed robust circadian oscillations. Therefore, at a cellular level, the circadian clock likely begins at the very earliest stages of mammalian development.  相似文献   
57.
Antiproliferative and antifungal activities of essential oils from Erigeron acris root and herb and from Erigeron annuus herb were investigated. The cell viability assay was performed in cultured fibroblasts, cancer cell lines (MCF-7 and MDA-MBA-231), and endometrial adenocarcinoma (Ishikawa) cells as well as colon adenocarcinoma (DLD-1) cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The essential oil from E. acris root showed the highest antiproliferative activity in the MCF-7 cell line with an IC50 value of 14.5 microg/mL. No effect of the essential oil on normal cells at that concentration was found. Antifungal activity against various strains of five Candida species, i.e. C. albicans, C. glabrata, C. tropicalis, C. krusei, and C. parapsilosis, was tested by the microdilution method. It was found that all examined oils can be useful as antifungal agents against the above-mentioned species, but the essential oil of E. acris herb was the most active. Their minimum inhibitory concentrations (MIC) ranged from 30 to 0.4 microL/mL. The data presented suggest that essential oils from E. acris and E. annuus possess antifungal activity against Candida spp. and antiproliferative activity against breast cancer MCF-7 cells.  相似文献   
58.
The perception of microbes by plants involves highly conserved molecular signatures that are absent from the host and that are collectively referred to as microbe‐associated molecular patterns (MAMPs). The Arabidopsis pattern recognition receptors FLAGELLIN‐SENSING 2 (FLS2) and EF‐Tu receptor (EFR) represent genetically well studied paradigms that mediate defense against bacterial pathogens. Stimulation of these receptors through their cognate ligands, bacterial flagellin or bacterial elongation factor Tu, leads to a defense response and ultimately to increased resistance. However, little is known about the early signaling pathway of these receptors. Here, we characterize this early response in situ, using an electrophysiological approach. In line with a release of negatively charged molecules, voltage recordings of microelectrode‐impaled mesophyll cells and root hairs of Col‐0 Arabidopsis plants revealed rapid, dose‐dependent membrane potential depolarizations in response to either flg22 or elf18. Using ion‐selective microelectrodes, pronounced anion currents were recorded upon application of flg22 and elf18, indicating that the signaling cascades initiated by each of the two receptors converge on the same plasma membrane ion channels. Combined calcium imaging and electrophysiological measurements revealed that the depolarization was superimposed by an increase in cytosolic calcium that was indispensable for depolarization. NADPH oxidase mutants were still depolarized upon elicitor stimulation, suggesting a reactive oxygen species‐independent membrane potential response. Furthermore, electrical signaling in response to either flg22 or elf 18 critically depends on the activity of the FLS2‐associated receptor‐like kinase BAK1, suggesting that activation of FLS2 and EFR lead to BAK1‐dependent, calcium‐associated plasma membrane anion channel opening as an initial step in the pathogen defense pathway.  相似文献   
59.
In plants, an electrical potential and circumnutation disturbances are a part of a response to environmental and internal stimuli. Precise relations between electrical potential changes and circumnutation mechanisms are unclear. We have found recently that glutamate (Glu) injection into Helianthus annuus stem induced a series of action potentials (APs) and a transient decrease in circumnutation activity. A theoretical explanation for this finding is discussed here taking into considerations data about the ion mechanism of AP and circumnutation as well as about the metabolic and signaling pathways of glutamate and their possible interactions.Key words: action potential, circumnutation, elongation, glutamate, Helianthus annuus, plant movement  相似文献   
60.
p66Shc, the growth factor adaptor protein, can have a substantial impact on mitochondrial metabolism through regulation of cellular response to oxidative stress. We investigated relationships between the extent of p66Shc phosphorylation at Ser36, mitochondrial dysfunctions and an antioxidant defense reactions in fibroblasts derived from five patients with various mitochondrial disorders (two with mitochondrial DNA mutations and three with methylglutaconic aciduria and genetic defects localized, most probably, in nuclear genes). We found that in all these fibroblasts, the extent of p66Shc phosphorylation at Ser36 was significantly increased. This correlated with a substantially decreased level of mitochondrial superoxide dismutase (SOD2) in these cells. This suggest that SOD2 is under control of the Ser36 phosphorylation status of p66Shc protein. As a consequence, an intracellular oxidative stress and accumulation of damages caused by oxygen free radicals are observed in the cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号