首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   8篇
  2022年   1篇
  2019年   2篇
  2018年   1篇
  2016年   7篇
  2015年   5篇
  2014年   6篇
  2013年   7篇
  2012年   8篇
  2011年   7篇
  2010年   2篇
  2009年   12篇
  2008年   8篇
  2007年   7篇
  2006年   3篇
  2005年   7篇
  2004年   9篇
  2003年   4篇
  2002年   5篇
  2001年   3篇
  2000年   2篇
  1999年   5篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1987年   5篇
  1986年   3篇
  1985年   1篇
  1983年   1篇
  1978年   1篇
  1973年   1篇
  1966年   3篇
排序方式: 共有134条查询结果,搜索用时 31 毫秒
131.
The effect of acute administration of L-DOPA on TSH and TRH levels in serum was studied in primary or pituitary hypothyroidism. TRH levels in serum fell and then returned to initial levels after L-DOPA administration in primary or pituitary hypothyroidism. TSH levels in serum fell and then returned to initial levels after L-DOPA administration in primary hypothyroidism. T4 and T3 levels in serum did not change after L-DOPA administration in primary or pituitary hypothyroidism. These data suggested that L-DOPA might act directly to hypothalamus.  相似文献   
132.
Effects of acetylcholine on the release of thyrotropin-releasing hormone (TRH) from the rat caecum in vitro were studied. The rat caecum was incubated in medium 199 with 1.0 mg/ml of bacitracin and 100 micrograms/ml of ascorbic acid (pH 7.4) (medium). The amount of TRH release into the medium was measured by radioimmunoassay. The immunoreactive TRH (ir-TRH) release from the rat caecum was enhanced significantly in a dose-related manner with the addition of acetylcholine, but not changed with atropine. The stimulatory effect of acetylcholine on ir-TRH release from the rat caecum was blocked with an addition of atropine. Elution profile of acid-methanol-extracted rat caecum on Sephadex G-10 was identical to that of synthetic TRH. The findings suggest that the cholinergic system stimulates TRH release from the rat caecum in vitro.  相似文献   
133.
Susceptibility to Mycobacterium lepraemurium (MLM) infection markedly differed between two mouse strains, CBA/J and C57BL/6. CBA/J mice showed high susceptibility to MLM infection and developed either very weak or no delayed-type hypersensitivity (DTH) to MLM antigen after the injection of MLM. In contrast, C57BL/6 mice, which were resistant to MLM infection, showed significant DTH reaction to MLM antigen after the injection. Treatment of CBA/J mice with cyclophosphamide (Cy) conferred significant resistance to MLM infection on the CBA/J mice, and the treated mice developed a strong anti-MLM DTH response after the MLM injection. When spleen cells from MLM-infected CBA/J mice were transferred to Cy-treated and MLM-infected syngeneic mice, the anti-MLM DTH reaction of the recipient mice was suppressed. Treatment of the spleen cells to be transferred with anti-Thy-1.2 antibody or anti-I-Jk antiserum plus complement abrogated the suppressive activity. Thus, it is suggested that the high susceptibility of CBA/J mice to MLM infection is due to the generation of Cy-sensitive, I-Jk-positive suppressor T cells after infection with MLM.  相似文献   
134.
Effects of opioid peptides (beta-endorphin, dynorphin (1-13). alpha-neoendorphin, beta-neoendorphin, leucine-enkephalin, methionine-enkephalin) on the release of thyrotropin-releasing hormone (TRH) from the rat caecum were studied in vitro. The rat caecum was incubated in medium 199 with 1.0 mg/ml of bacitracin (pH 7.4) (medium). The amount of TRH release from the rat caecum into the medium was measured by radioimmunoassay. The immunoreactive TRH (ir-TRH) release from the rat caecum was inhibited significantly in a dose-related manner with the addition of opioid peptides. The inhibitory effects of opioid peptides on ir-TRH release from the rat caecum were blocked with an addition of naloxone. The elution profile of acid-methanol-extracts of rat caecum on Sephadex G-10 was identical to that of synthetic TRH. The findings suggest that opioid peptides inhibit TRH release from the rat caecum in vitro.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号