首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   6篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   5篇
  2013年   8篇
  2012年   2篇
  2011年   3篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1992年   1篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1969年   3篇
  1968年   1篇
排序方式: 共有87条查询结果,搜索用时 46 毫秒
71.
72.
2-Acetylaminofluorene (AAF) was highly mutagenic to Salmonella typhimurium strain TA98, when activated by a liver post-mitochondrial supernatant fraction (S9 fraction) from guinea-pigs, in spite of the resistance of this species to AAF carcinogenesis and the low capacity of the liver of this species for N-hydroxylation of AAF. The mutagenicity was comparable to or higher than that resulting from activation by mouse- or rat-liver S9 fraction, and was not enchanced by treatment with cytochrome P-450 inducers, a combination of phenobarbital and 5,6-benzoflavone. In an attempt to understand this unexpected result we examined whether a cytochrome P-450 mixed-function oxidase system participated in the mutagenic activation of AAF by guinea-pig liver, as it does in the case of mouse liver. The mutagenic activation was: (1) completely dependent on the addition of a co-factor, NADPH, to the mutation assay system, (2) completely suppressed by antiserum against NADPH--cytochrome c reductase, and (3) sensitive to a cytochrome P-450 inhibitor, 7,8-benzoflavone. These results indicate that the cytochrome P-450 enzyme system is essentially involved even in the mutagenic activation of AAF by guinea-pig-liver S9 fraction. Based on both the present and other data, the mechanism of the mutagenic activation is discussed to explain the observed high mutagenic potential of AAF in the presence of guinea-pig-liver S9 fraction.  相似文献   
73.
Nucleotide sequence homology among 4.5S RNAs from various organisms was examined by computer analysis to evaluate their sequence relationships. Chloroplast 4.5S rRNAs of wheat and tobacco were not significantly related to Escherichia coli 4.5S RNA, but were closely related to the 3'-terminus of bacterial 23S rRNA. Significant sequence homology was found between rat Novikoff hepatoma 4.5S RNAI and mouse and hamster 4.5S RNAs, suggesting that these RNAs are products of a family of genes with diverged sequences. E. coli 4.5S RNA had no significant sequence homology with any rodent 4.5S RNAs as a whole sequence. The E. coli, mouse and hamster 4.5S RNAs, however, were found to share a homologous 14-nucleotide sequence at the center of the molecules, which is known to exist as a conserved sequence in both Alu and Alu-equivalent sequences of mammalian DNAs.  相似文献   
74.
Protein synthesis in bacteriophage ghost-infected cells.   总被引:1,自引:0,他引:1       下载免费PDF全文
Escherichia coli B infected with T4 phage ghosts at 10 mM Mg2+ regains its protein synthesizing activity upon addition of ATP, GTP, and their generator to approximately 2% of the intact exponentially growing cells. In contrast to amino acid incorporation by intact cells, this system is sensitive to EDTA or low Mg2+. On the other hand, this system, differing from the regular cell-free system, does not respond to addition of soluble protein and ribonuclease. The ghost-infected cells were able to synthesize beta-galactosidase upon addition of the inducer isopropyl thiogalactoside. The initial rate of the induction was 2.6% of intact cells. For this induction, the addition of cyclic AMP, amino acids, ATP, GTP, UTP, CTP, and their generator was necessary. The induction of beta-galactosidase in these ghost-infected cells was very sensitive to the addition of EDTA, CaCl2, sulfhydryl blocking reagent, rifampin and chloramphenicol but insensitive to DNA synthesis inhibitors such as nalidixic acid and DNase.  相似文献   
75.
The activation pathway of 2-acetylaminofluorene (AAF) to N-hydroxy-2-amino-fluorene (N-OH-AF), a potent mutagen to Salmonella, by guinea pig liver postmitochondrial supernatant fraction (S-9 fraction) was studied. 2-Aminofluorene (AF), as well as N-hydroxy-2-acetylaminofluorene (N-OH-AAF, Takeishi et al., Mutation Res. in press), was detected as a metabolite of AAF. The mutagenicities of AF and N-OH-AAF comparable to that of AAF were inhibited by antiserum against NADPH-cytochrome c reductase and by paraoxon, respectively. These data indicate that in the mutagenic activation of AAF, N-OH-AF can be produced by both N-hydroxylation of AF and deacetylation of N-OH-AAF. Furthermore, the data on the relative contribution of paraoxon-sensitive activation pathway to mutagenicities of AAF and N-OH-AAF led to a conclusion that deacetylation of AAF followed by N-hydroxylation to produce N-OH-AF is the main pathway for the mutagenic activation of AAF by guinea pig liver S-9 fraction.  相似文献   
76.
Galpha(q) protein-coupled receptor (GPCR) signaling pathway, which includes diacylglycerol (DAG) and protein kinase C (PKC), plays a critical role in cardiac hypertrophy. DAG kinase (DGK) catalyzes DAG phosphorylation and controls cellular DAG levels, thus acting as a regulator of GPCR signaling. It has been reported that DGKepsilon acts specifically on DAG produced by inositol cycling. In this study, we examined whether DGKepsilon prevents cardiac hypertrophy and progression to heart failure under chronic pressure overload. We generated transgenic mice with cardiac-specific overexpression of DGKepsilon (DGKepsilon-TG) using an alpha-myosin heavy chain promoter. There were no differences in cardiac morphology and function between wild-type (WT) and DGKepsilon-TG mice at the basal condition. Either continuous phenylephrine infusion or thoracic transverse aortic constriction (TAC) was performed in WT and DGKepsilon-TG mice. Increases in heart weight after phenylephrine infusion and TAC were abolished in DGKepsilon-TG mice compared with WT mice. Cardiac dysfunction after TAC was prevented in DGKepsilon-TG mice, and the survival rate after TAC was higher in DGKepsilon-TG mice than in WT mice. Phenylephrine- and TAC-induced DAG accumulation, the translocation of PKC isoforms, and the induction of fetal genes were blocked in DGKepsilon-TG mouse hearts. The upregulation of transient receptor potential channel (TRPC)-6 expression after TAC was attenuated in DGKepsilon-TG mice. In conclusion, these results demonstrate the first evidence that DGKepsilon restores cardiac dysfunction and improves survival under chronic pressure overload by controlling cellular DAG levels and TRPC-6 expression. DGKepsilon may be a novel therapeutic target to prevent cardiac hypertrophy and progression to heart failure.  相似文献   
77.
Organ-like microenviroment and 3-dimensional (3D) cell culture conformations have been suggested as promising approaches to mimic in a micro-scale a whole organ cellular functions and interactions present in vivo. We have used this approach to examine biologic features of hepatocellular carcinoma (HCC) cells. In this study, we demonstrate that hepatocellular carcinoma (HCC) cells, fibroblasts, endothelial cells and extracellular matrix can generate organoid-like spheroids that enhanced numerous features of human HCC observed in vivo. We show that the addition of non-parenchymal cells such as fibroblast and endothelial cells is required for spheroid formation as well as the maintenance of the tissue-like structure. Furthermore, HCC cells cultured as spheroids with non-parenchymal cells express more neo-angiogenesis-related markers (VEGFR2, VEGF, HIF-α), tumor-related inflammatory factors (CXCR4, CXCL12, TNF-α) and molecules-related to induced epithelial-mesenchymal transition (TGFβ, Vimentin, MMP9) compared with organoids containing only HCC cells.

These results demonstrate the importance of non-parenchymal cells in the cellular composition of HCC organoids. The novelty of the multicellular-based organotypic culture system strongly supports the integration of this approach in a high throughput approach to identified patient-specific HCC malignancy and accurate anti-tumor therapy screening after surgery.  相似文献   

78.
The tandemly repeated 28-bp sequence in the 5-terminal regulatory region of human thymidylate synthase (TSER), which has been reported to be polymorphic in different populations, was surveyed in 668 Chinese from 9 Han groups, 8 ethnic populations, and 36 individuals representing a three-generation pedigree. Amplified fragments were separated by electrophoresis on 4% agarose gel. In addition to the reported double and triple repeats of the 28-bp sequence in TSER, we also detected a novel quintuple repeat in this region. The transient expression activity of TSER with the quintuple repeat is almost the same as that of the reported TSER with the triple repeat. All three alleles of the repeat type (2, 3, and 5) were further confirmed by sequencing. The frequencies of the TSER allele 2 and 3 were 18.82 and 81% in totally unrelated Chinese samples, respectively, while the frequency of allele 3 was variable in different Chinese populations with a range from 62 to 95%. On the basis of the sequences of the different alleles, the existence of the tandem repeats in each allele might be explained by slipped-strand mispairing during DNA replication.  相似文献   
79.
With regard to the mechanotransduction mechanisms of vasculature involved in hypertensive diseases, we aimed to identify tyrosine-phosphorylated proteins in pulmonary artery that responded to mechanical stress. Mechanical stretch simultaneously augmented protein-tyrosine phosphorylation in p55, p95, p105, p115, p130, p165, p180 in pulmonary artery tissue and pulmonary artery-derived smooth muscle cells (PASMC), whereas p115 and p55 were preferentially phosphorylated by the stretch in endothelial cells (PAEC). A series of experiments designed to characterize these proteins indicated that p115 and p180 were focal adhesion kinase (FAK) and platelet-derived growth factor receptor (PDGF-R), respectively, and that stretch augmented the surface-expression of PDGF-R in PASMC but not in PAEC. Moreover, a significant increase in the steady-state mRNA level for PDGF-R was observed in the pulmonary artery of rats with monocrotaline-induced pulmonary hypertension, where the artery should be overstretched due to increasing pulmonary arterial blood pressure. These results suggest that stretch-induced overexpression of cell-surface PDGF-R as well as augmentation of tyrosine phosphorylation of proteins including FAK in PASMC might be involved in the mechanotransduction of pulmonary artery.  相似文献   
80.

Background

Beneficial effects of nicorandil on the treatment of hypertensive heart failure (HF) and ischemic heart disease have been suggested. However, whether nicorandil has inhibitory effects on HF and ventricular arrhythmias caused by the activation of G protein alpha q (Gαq) -coupled receptor (GPCR) signaling still remains unknown. We investigated these inhibitory effects of nicorandil in transgenic mice with transient cardiac expression of activated Gαq (Gαq-TG).

Methodology/Principal Findings

Nicorandil (6 mg/kg/day) or vehicle was chronically administered to Gαq-TG from 8 to 32 weeks of age, and all experiments were performed in mice at the age of 32 weeks. Chronic nicorandil administration prevented the severe reduction of left ventricular fractional shortening and inhibited ventricular interstitial fibrosis in Gαq-TG. SUR-2B and SERCA2 gene expression was decreased in vehicle-treated Gαq-TG but not in nicorandil-treated Gαq-TG. eNOS gene expression was also increased in nicorandil-treated Gαq-TG compared with vehicle-treated Gαq-TG. Electrocardiogram demonstrated that premature ventricular contraction (PVC) was frequently (more than 20 beats/min) observed in 7 of 10 vehicle-treated Gαq-TG but in none of 10 nicorandil-treated Gαq-TG. The QT interval was significantly shorter in nicorandil-treated Gαq-TG than vehicle-treated Gαq-TG. Acute nicorandil administration shortened ventricular monophasic action potential duration and reduced the number of PVCs in Langendorff-perfused Gαq-TG mouse hearts. Moreover, HMR1098, a blocker of cardiac sarcolemmal KATP channels, significantly attenuated the shortening of MAP duration induced by nicorandil in the Gαq-TG heart.

Conclusions/Significance

These findings suggest that nicorandil can prevent the development of HF and ventricular arrhythmia caused by the activation of GPCR signaling through the shortening of the QT interval, action potential duration, the normalization of SERCA2 gene expression. Nicorandil may also improve the impaired coronary circulation during HF.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号