首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   2篇
  2022年   2篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2014年   1篇
  2013年   6篇
  2012年   6篇
  2011年   4篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   5篇
  2006年   4篇
  2005年   7篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  1999年   1篇
  1994年   1篇
  1992年   1篇
排序方式: 共有59条查询结果,搜索用时 250 毫秒
11.
A novel cellulose derivative, 6-O-dihydrophytylcellulose (DHPC), was first synthesized via a ring-opening polymerization and allowed to self-assemble onto an air-water interface. Langmuir-Blodgett (LB) films were characterized with atomic force microscope (AFM), UV-vis spectroscopy, and Fourier transform infrared spectroscopy. The surface pressure-area (pi-A) isotherms for DHPC and beta-carotene (betaC) mixture indicated strong interaction between these compounds to pack well. Thus, DHPC has the ability to anchor betaC in the monolayer. It was proved that a betaC-DHPC monolayer was transferred successfully onto a substrate, yielding Y-type LB films by UV spectroscopic analysis. The transmission and reflection-absorption IR spectra (RAS) indicated that the dihydrophytyl chains had almost trans-zigzag conformation and were oriented nearly perpendicular to the substrate. AFM section analysis revealed the thickness per layer to be 2.32 nm. Consequently, DHPC was found to be an appropriate matrix to fabricate the mixed LB films containing betaC.  相似文献   
12.
Repeated exposure of ultraviolet radiation B (UVB) on the dorsal skin of hairless mice induces the development of pigmented spots long after its cessation. The proliferation and differentiation of epidermal melanocytes in UVB-induced pigmented spots are greatly increased, and those effects are regulated by keratinocytes rather than by melanocytes. However, it remains to be resolved what factor(s) derived from keratinocytes are involved in regulating the proliferation and differentiation of epidermal melanocytes. In this study, primary melanoblasts (c. 80%) and melanocytes (c. 20%) derived from epidermal cell suspensions of mouse skin were cultured in a basic fibroblast growth factor-free medium supplemented with granulocyte-macrophage colony-stimulating factor (GM-CSF). GM-CSF induced the proliferation and differentiation of melanocytes in those keratinocyte-depleted cultures. Moreover, an antibody to GM-CSF inhibited the proliferation of melanoblasts and melanocytes from epidermal cell suspensions derived from the pigmented spots of UV-irradiated mice, but not from control mice. Further, the GM-CSF antibody inhibited the proliferation and differentiation of melanocytes co-cultured with keratinocytes derived from UV-irradiated mice, but not from control mice. The quantity of GM-CSF secreted from keratinocytes derived from the pigmented spots of UV-irradiated mice was much greater than that secreted from keratinocytes derived from control mice. Moreover, immunohistochemistry revealed the expression of GM-CSF in keratinocytes derived from the pigmented spots of skin in UV-irradiated mice, but not from normal skin in control mice. These results suggest that GM-CSF is one of the keratinocyte-derived factors involved in regulating the proliferation and differentiation of mouse epidermal melanocytes from UVB-induced pigmented spots.  相似文献   
13.
In earlier studies we have shown that both the pressure (P) of the carotid artery pulse (CAP) and its first derivative (CAP dP/dt) could be recorded during moderate exercise. To establish that the CAP (dP/dt)/P is a noninvasive substitute for the left ventricular (LV) value, LV (dP/dt)/P, an index of cardiac contractility, we studied CAP (dP/dt)/P under various states of activity in the autonomic nervous system in 12 healthy male subjects. Increased sympathetic nerve activities yielded by passive tilting, emotional load, or cold stress increased CAP (dP/dt)/P significantly (P< 0.05). Increased parasympathetic nerve activity by ocular compression, however, did not significantly affect the value. Moderate exercise at a heart rate of approximately 150 beats·min–1 increased it significantly from 16.7 to 25.2·s–1 in a supine position (P<0.001) and from 16.6 to 24.8·s–1 in an upright position (P<0.001). It increased monotonically as heart rate increased, but the slope was steeper when the heart rate was greater than approximately 100 beats·min–1 than it was when the rate was less than 100 beats·min–1. In conclusion, the present study indicated that CAP (dP/dt)/P can be used as a noninvasive index of cardiac contractility even in moderate exercise.  相似文献   
14.
PsbP is a membrane extrinsic subunit of Photosystem II (PS II), which is involved in retaining Ca2+ and Cl, two inorganic cofactors for the water-splitting reaction. In this study, we re-investigated the role of N-terminal region of PsbP on the basis of its three-dimensional structure. In previous paper [Ifuku and Sato (2002) Plant Cell Physiol 43: 1244–1249], a truncated PsbP lacking 19 N-terminal residues (Δ19) was found to bind to NaCl-washed PS II lacking PsbP and PsbQ without activation of oxygen evolution at all. Three-dimensional (3D) structure of PsbP suggests that deletion of 19 N-terminal residues would destabilize its protein structure, as indicated by the high sensitivity of Δ19 to trypsin digestion. Thus, a truncated PsbP lacking 15 N-terminal residues (Δ15), which retained core PsbP structure, was produced. Whereas Δ15 was resistant to trypsin digestion and bound to NaCl-washed PS II membranes, it did not show the activation of oxygen evolution. This result indicated that the interaction of 15-residue N-terminal flexible region of PsbP with PS II was important for Ca2+ and Cl retention in PS II, although the 15 N-terminal residues were not essential for the binding of PsbP to PS II. The possible N-terminal residues of PsbP that would be involved in this interaction are discussed.  相似文献   
15.
PsbP and PsbQ proteins are extrinsic subunits of photosystem II (PSII) and participate in the normal function of photosynthetic water oxidation. Both proteins exist in a broad range of the oxygenic photosynthetic organisms; however, their physiological roles in vivo have not been well defined in higher plants. In this study, we established and analyzed transgenic tobacco (Nicotiana tabacum) plants in which the levels of PsbP or PsbQ were severely down-regulated by the RNA interference technique. A plant that lacked PsbQ showed no specific phenotype compared to a wild-type plant. This suggests that PsbQ in higher plants is dispensable under the normal growth condition. On the other hand, a plant that lacked PsbP showed prominent phenotypes: drastic retardation of growth, pale-green-colored leaves, and a marked decrease in the quantum yield of PSII evaluated by chlorophyll fluorescence. In PsbP-deficient plant, most PSII core subunits were accumulated in thylakoids, whereas PsbQ, which requires PsbP to bind PSII in vitro, was dramatically decreased. PSII without PsbP was hypersensitive to light and rapidly inactivated when the repair process of the damaged PSII was inhibited by chloramphenicol. Furthermore, thermoluminescence studies showed that the catalytic manganese cluster in PsbP-deficient leaves was markedly unstable and readily disassembled in the dark. The present results demonstrated that PsbP, but not PsbQ, is indispensable for the normal PSII function in higher plants in vivo.  相似文献   
16.
Ifuku K  Nakatsu T  Kato H  Sato F 《EMBO reports》2004,5(4):362-367
PsbP is a membrane-extrinsic subunit of the water-oxidizing complex photosystem II (PS II). The evolutionary origin of PsbP has long been a mystery because it specifically exists in higher plants and green algae but not in cyanobacteria. We report here the crystal structure of PsbP from Nicotiana tabacum at a resolution of 1.6 Å. Its structure is mainly composed of β-sheet, and is not similar to any structures in cyanobacterial PS II. However, the electrostatic surface potential of PsbP is similar to that of cyanobacterial PsbV (cyt c550), which has a function similar to PsbP. A structural homology search with the DALI algorithm indicated that the folding of PsbP is very similar to that of Mog1p, a regulatory protein for the nuclear transport of Ran GTPase. The structure of PsbP provides insight into its novel function in GTP-regulated metabolism in PS II.  相似文献   
17.
We characterized the antifungal activity of the Bacillus circulans subclass III MH-K1 chitosanase (MH-K1 chitosanase), which is one of the most intensively studied glycoside hydrolases (GHs) that belong to GH family 46. MH-K1 chitosanase inhibited the growth of zygomycetes fungi, Rhizopus and Mucor, even at 10 pmol (0.3 μg)/ml culture probably via its fungistatic effect. The amino acid substitution E37Q abolished the antifungal activity of MH-K1 chitosanase, but retained binding to chitotriose. The E37Q mutant was fused with green fluorescent protein (GFP) at its N-terminus and proved to act as a chitosan probe in combination with wheat-germ agglutinin (WGA), which is a chitin-specific binding lectin. The GFP-fused MH-K1 chitosanase mutant E37Q (GFP-E37Q) bound clearly to the hyphae of the Rhizopus and Mucor strains, indicating the presence of chitosan. In contrast, Cy5-labelled WGA (Cy5-WGA), but not GFP-E37Q, stained the hyphae of non-zygomycetes species, i.e. Fusarium oxysporum, Penicillium expansum, and Aspergillus awamori. When the mycelia of Rhizopus oryzae were treated with wild type MH-K1 chitosanase, they could not bind to GFP-E37Q but were stained instead by Cy5-WGA. We conclude that chitin is covered by chitosan in the cell walls of R. oryzae.  相似文献   
18.
Neuronal cells are susceptible to many stresses, which will cause the apoptosis and neurodegenerative diseases. The precise molecular mechanism behind the neuronal protection against these apoptotic stimuli is necessary for drug discovery. In the present study, we have found that plasmalogens (Pls), which are glycerophospholipids containing vinyl ether linkage at sn-1 position, can protect the neuronal cell death upon serum deprivation. Interestingly, caspse-9, but not caspase-8 and caspase-12, was cleaved upon the serum starvation in Neuro-2A cells. Pls treatments effectively reduced the activation of caspase-9. Furthermore, cellular signaling experiments showed that Pls enhanced phosphorylation of the phosphoinositide 3-kinase (PI3K)-dependent serine/threonine-specific protein kinase AKT and extracellular-signal-regulated kinases ERK1/2. PI3K/AKT inhibitor LY294002 and MAPK/ERK kinase (MEK) inhibitor U0126 treatments study clearly indicated that Pls-mediated cell survival was dependent on the activation of these kinases. In addition, Pls also inhibited primary mouse hippocampal neuronal cell death induced by nutrient deprivation, which was associated with the inhibition of caspase-9 and caspase-3 cleavages. It was reported that Pls content decreased in the brain of the Alzheimer’s patients, which indicated that the reduction of Pls content could endanger neurons. The present findings, taken together, suggest that Pls have an anti-apoptotic action in the brain. Further studies on precise mechanisms of Pls-mediated protection against cell death may lead us to establish a novel therapeutic approach to cure neurodegenerative disorders.  相似文献   
19.
Journal of Plant Research - Low temperature inhibits photosynthesis and negatively affects plant growth. Cucumber (Cucumis sativus&nbsp;L.) is a chilling-sensitive plant, and its greenhouse...  相似文献   
20.

The light reactions of photosynthesis are known to comprise both linear and cyclic electron flow in order to convert light energy into chemical energy in the form of NADPH and ATP. Antimycin A (AA) has been proposed as an inhibitor of ferredoxin-dependent cyclic electron flow around photosystem I (CEF-PSI) in photosynthesis research. However, its precise inhibitory mechanism and target site had not been elucidated yet. Here we show that AA inhibits the cyclic (alternative) electron flow via cytochrome b559 (Cyt b559) within photosystem II (CEF-PSII). When AA was applied to thylakoid membranes isolated from spinach leaves, the high potential form of Cyt b559, which was reduced in the dark, was transformed into the lower potential forms and readily oxidized by molecular oxygen. In the absence of AA, the reduced Cyt b559 was oxidized by P680+ upon light illumination and re-reduced in the dark, mainly by the electron from the QB site on the acceptor side of PSII. In contrast, AA suppressed the oxidation of Cyt b559 and induced its reduction under the illumination. This inhibition of Cyt b559 oxidation by AA enhanced photoinhibition of PSII. Based on the above results, we propose caution regarding the use of AA for evaluating CEF-PSI per se and concurrently propose that AA provides for new insights into, and interpretations of, the physiological importance of Cyt b559, rather than that of CEF-PSI in photosynthetic organisms.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号