首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3416篇
  免费   264篇
  3680篇
  2023年   8篇
  2022年   25篇
  2021年   59篇
  2020年   26篇
  2019年   29篇
  2018年   43篇
  2017年   35篇
  2016年   88篇
  2015年   110篇
  2014年   147篇
  2013年   223篇
  2012年   261篇
  2011年   247篇
  2010年   184篇
  2009年   169篇
  2008年   227篇
  2007年   240篇
  2006年   220篇
  2005年   187篇
  2004年   219篇
  2003年   206篇
  2002年   195篇
  2001年   33篇
  2000年   36篇
  1999年   39篇
  1998年   88篇
  1997年   46篇
  1996年   44篇
  1995年   35篇
  1994年   34篇
  1993年   32篇
  1992年   21篇
  1991年   22篇
  1990年   11篇
  1989年   14篇
  1988年   17篇
  1987年   6篇
  1986年   4篇
  1985年   6篇
  1984年   8篇
  1983年   2篇
  1982年   9篇
  1981年   10篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
排序方式: 共有3680条查询结果,搜索用时 15 毫秒
51.
The present study is an attempt to relate the multicomponent response of the cytoskeleton (CSK), evaluated in twisted living adherent cells, to the heterogeneity of the cytoskeletal structure - evaluated both experimentally by means of 3D reconstructions, and theoretically considering the predictions given by two tensegrity models composed of (four and six) compressive elements and (respectively 12 and 24) tensile elements. Using magnetic twisting cytometry in which beads are attached to integrin receptors linked to the actin CSK of living adherent epithelial cells, we specifically measured the elastic CSK response at quasi equilibrium state and partitioned this response in terms of cortical and cytosolic contributions with a two-component model (i.e., a series of two Voigt bodies). These two CSK components were found to be prestressed and exhibited a stress-hardening response which both characterize tensegrity behaviour with however significant differences: compared to the cytosolic component, the cortical cytoskeleton appears to be a faster responding component, being a less prestressed and easily deformable structure. The discrepancies in elastic behaviour between the cortical and cytosolic CSK components may be understood on the basis of prestress tensegrity model predictions, given that the length and number of constitutive actin elements are taken into account.  相似文献   
52.
53.
To facilitate the use of the new mutant resource developed in the mouse, we have generated Cre and FlpO deleter mice on a pure inbred C57BL/6N background. The new transgenic constructs were designed to drive either the Cre or FlpO recombinase, fused to a specific fluorescent marker, respectively the eGFP or the eYFP, and were inserted by homologous recombination in the neutral Rosa26 locus. They allow a rapid, cost-effective, and efficient identification of the carrier individuals through the coexpression of the fluorescent marker. The recombination efficiency of the two deleter lines, Gt(ROSA)26S or < tm1(ACTB-cre,-EGFP)Ics> and Gt(ROSA) 26S or < tm2(CAG-flpo, EYFP)Ics>, was carefully evaluated using five loxP-flanked or four FRT-flanked alleles located at different positions in the mouse genome. For each tested locus, we observed a 100% excision rate. The transgenic mice are easily distinguishable from wild type animals by their bright fluorescence that remains easily detectable until 10 days after birth. In the adult, fluorescence can still be detected in the unpigmented paws. Furthermore, they both display accumulation of the specific recombinase during oogenesis. These fluorescent 'Cre- and Flp- deleter' transgenic lines are valuable tools for the scientific community by their high and stable recombination efficiency, the simplicity of genotype identification and the maintenance of a pure genetic background when used to remove specific selection cassette or to induce complete loss-of-function allele.  相似文献   
54.
Summary Kinetic data in (brush-border) membrane vesicles which rely on the validity of the initial rate assumption for their interpretation and depend on tracer flux studies using the rapid filtration technique for their experimental measurement have been limited to some extent by the absence of techniques that would allow for real-time data analysis. In this paper, we report on our successful design of a fast sampling, rapid filtration apparatus (FSRFA) which seems to fill up this technical gap since showing the following characteristics: (i) rapid injection (5 msec) and mixing (less than 100 msec) of small amounts of vesicles (10–40 l) with an incubation medium (0.2–1.0 ml); (ii) fast (20 to 80 msec depending on the sample volume) and multiple (up to 18 samples at a maximal rate of 4/sec) sampling of the uptake mixture followed by rapid quenching in the stop solution (approximately 5 msec) according to a predetermined time schedule (any time combination from 0.25 to 9999 sec); and (iii) fast, automated, and sampling-synchronized filtration and washings of the quenched uptake medium (only 15–20 sec are necessary for the first filtration followed by two washings and extra filtrations). As demonstrated using adult human jejunal brush-border membrane vesicles and Na+-d-glucose cotransport as models, the FSRFA accurately reproduces the manual aspects of the rapid filtration technique while allowing for very precise initial rate determinations. Moreover, the FSRFA has also been designed to provide as much versatility as possible and, in its present version, allows for a very precise control of the incubation temperature and also permits a few efflux protocols to be performed. Finally, its modular design, which separates the fast sampling unit from the rapid filtration device, should help in extending its use to fields other than transport measurement.  相似文献   
55.
Background and AimsAbiotic and biotic stresses related to climate change have been associated with increased crown defoliation, decreased growth and a higher risk of mortality in many forest tree species, but the impact of stresses on tree reproduction and forest regeneration remains understudied. At the dry, warm margin of species distributions, flowering, pollination and seed maturation are expected to be affected by drought, late frost and other stresses, eventually resulting in reproduction failure. Moreover, inter-individual variation in reproductive performance versus other performance traits (growth, survival) could have important consequences for population dynamics. This study investigated the relationships among individual crown defoliation, growth and reproduction in a drought-prone population of European beech, Fagus sylvatica.MethodsWe used a spatially explicit mating model and marker-based parentage analyses to estimate effective female and male fecundities of 432 reproductive trees, which were also monitored for basal area increment and crown defoliation over 9 years.Key ResultsFemale and male fecundities varied markedly between individuals, more than did growth. Both female fecundity and growth decreased with increasing crown defoliation and competition, and increased with size. Moreover, the negative effect of defoliation on female fecundity was size-dependent, with a slower decline in female fecundity with increasing defoliation for the large individuals. Finally, a trade-off between growth and female fecundity was observed in response to defoliation: some large trees maintained significant female fecundity at the expense of reduced growth in response to defoliation, while some other defoliated trees maintained high growth at the expense of reduced female fecundity.ConclusionsOur results suggest that, while decreasing their growth, some large defoliated trees still contribute to reproduction through seed production and pollination. This non-coordinated decline of growth and fecundity at individual level in response to stress may compromise the evolution of stress-resistance traits at population level, and increase forest tree vulnerability.  相似文献   
56.
The vertebrate inner ear develops from an ectodermal placode adjacent to rhombomeres 4 to 6 of the segmented hindbrain. The placode then transforms into a vesicle and becomes regionalised along its anteroposterior, dorsoventral and mediolateral axes. To investigate the role of hindbrain signals in instructing otic vesicle regionalisation, we analysed ear development in zebrafish mutants for vhnf1, a gene expressed in the caudal hindbrain during otic induction and regionalisation. We show that, in vhnf1 homozygous embryos, the patterning of the otic vesicle is affected along both the anteroposterior and dorsoventral axes. First, anterior gene expression domains are either expanded along the whole anteroposterior axis of the vesicle or duplicated in the posterior region. Second, the dorsal domain is severely reduced, and cell groups normally located ventrally are shifted dorsally, sometimes forming a single dorsal patch along the whole AP extent of the otic vesicle. Third, and probably as a consequence, the size and organization of the sensory and neurogenic epithelia are disturbed. These results demonstrate that, in zebrafish, signals from the hindbrain control the patterning of the otic vesicle, not only along the anteroposterior axis, but also, as in amniotes, along the dorsoventral axis. They suggest that, despite the evolution of inner ear structure and function, some of the mechanisms underlying the regionalisation of the otic vesicle in fish and amniotes have been conserved.  相似文献   
57.
NfrA1 nitroreductase from the Gram-positive bacterium Bacillus subtilis is a member of the NAD(P)H/FMN oxidoreductase family. Here, we investigated the reactivity, the structure and kinetics of NfrA1, which could provide insight into the unclear biological role of this enzyme. We could show that NfrA1 possesses an NADH oxidase activity that leads to high concentrations of oxygen peroxide and an NAD+ degrading activity leading to free nicotinamide. Finally, we showed that NfrA1 is able to rapidly scavenge H2O2 produced during the oxidative process or added exogenously.

Structured summary

MINT-7990140: nfrA1 (uniprotkb:P39605) and nfrA1 (uniprotkb:P39605) bind (MI:0407) by X-ray crystallography (MI:0114)  相似文献   
58.
In higher plants, lysophosphatidic acid acyltransferase (LPAAT), located in the cytoplasmic endomembrane compartment, plays an essential role in the synthesis of phosphatidic acid, a key intermediate in the biosynthesis of membrane phospholipids in all tissues and storage lipids in developing seeds. In order to assess the contribution of LPAATs to the synthesis of storage lipids, we have characterized two microsomal LPAAT isozymes, the products of homoeologous genes that are expressed in rapeseed (Brassica napus). DNA sequence homologies, complementation of a bacterial LPAAT-deficient mutant, and enzymatic properties confirmed that each of two cDNAs isolated from a Brassica napus immature embryo library encoded a functional LPAAT possessing the properties of a eukaryotic pathway enzyme. Analyses in planta revealed differences in the expression of the two genes, one of which was detected in all rapeseed tissues and during silique and seed development, whereas the expression of the second gene was restricted predominantly to siliques and developing seeds. Expression of each rapeseed LPAAT isozyme in Arabidopsis (Arabidopsis thaliana) resulted in the production of seeds characterized by a greater lipid content and seed mass. These results support the hypothesis that increasing the expression of glycerolipid acyltransferases in seeds leads to a greater flux of intermediates through the Kennedy pathway and results in enhanced triacylglycerol accumulation.With increasing environmental challenges and concerns, there is renewed interest in deriving plant-based sustainable alternatives for petroleum products, including carburants, lubricants, and industrial feed stocks. Modifying oilseed crops to produce oils of uniform composition containing fatty acids varying in chain length or possessing reactive functional groups is a primary objective (Jaworski and Cahoon, 2003), as is that of increasing the yield of seed oil (Lardizabal et al., 2008; Zheng et al., 2008). Early success in modifying seed oils to produce the more common fatty acids has been tempered by limited success in the production of high levels of unusual fatty acids (UFAs) in cultivated oilseeds (Thelen and Ohlrogge, 2002; Drexler et al., 2003). Such studies have led to the conclusion that in order to achieve levels of UFAs similar to those present in the oil of native species, enzymatic activities additional to fatty acid modification are necessary to optimize the synthesis (Mekhedov et al., 2001), stability (Eccleston and Ohlrogge, 1998), and channeling (Bafor et al., 1990) of the desired fatty acid into triacylglycerol (TAG).The synthesis of glycerolipids occurs in the cytoplasm using de novo-synthesized fatty acids exported from the plastid as acyl-CoA thioesters. The fatty acyl groups are incorporated into membrane and storage lipids by the sequential esterification of glycerol-3-phosphate by the action of glycerol-3-phosphate acyltransferase (GPAT; EC 2.3.1.15) at sn-1 to form lysophosphatidic acid followed by lysophosphatidic acid acyltransferase (LPAAT; EC 2.3.1.51) at sn-2 to form phosphatidic acid (PA; Somerville et al., 2000). Dephosphorylation of PA results in the formation of diacylglycerol (DAG), which in developing seeds may be directed into the production of TAG by acyl-CoA-independent reactions or by diacylglycerol acyltransferase (DAGAT; EC 2.3.1.20; Roscoe, 2005). The substrate preferences for acyl-thioesters and the selectivities for the acceptor molecules displayed by the microsomal acyltransferases play a crucial role in establishing the acyl composition of lipids (Frentzen, 1998). The TAG synthesized in most oilseeds of agronomic importance contains fatty acids that are the same as those present in cytoplasmic membrane lipids. In contrast, the seeds of species that synthesize TAGs with exotic fatty acid compositions possess microsomal acyltransferases that facilitate the incorporation of UFAs into storage lipids because of their broad GPAT and/or their selective DAGAT specificities (Wiberg et al., 1994; Frentzen, 1998). Furthermore, oilseeds characterized by TAGs that contain UFAs at sn-2 possess additional seed-specific microsomal LPAATs (Brown et al., 1995; Hanke et al., 1995; Knutzon et al., 1995) that exhibit a wide variation in substrate preference and that serve to ensure the channeling of UFAs to this position, thereby segregating incompatible fatty acids away from membrane lipids.Cloning of cDNAs from cultivated and exotic plants and the availability of entirely sequenced genomes from plant and algal species have revealed that a minimum of two classes of genes encoding microsomal LPAATs exist (Frentzen, 1998) within a larger, LPAAT-like gene family containing acyltransferases as yet functionally uncharacterized but distinct from GPATs (Roscoe, 2005). The class A microsomal LPAATs defined by Frentzen (1998) possess substrate preferences for C18:1-CoA typical of enzymes involved in membrane lipid synthesis and are ubiquitously expressed in the plant. In contrast, individual members of the class B LPAATs display preferences for distinct, unusual saturated or unsaturated acyl groups and are normally expressed in storage organs. Although class B LPAATs have been exploited to alter the stereochemical composition of rapeseed (Brassica napus) oil to permit the incorporation of modified fatty acids at sn-2 (Lassner et al., 1995; Knutzon et al., 1999), a significant increase in the total amount of UFAs was not accomplished by the expression of the class B LPAATs alone. In contrast, the transformation of rapeseed and Arabidopsis (Arabidopsis thaliana) with a yeast gene encoding a variant LPAAT, SLC1-1, capable of accepting very long chain fatty acyl (VLCFA)-CoA substrates resulted in an increase in the total VLCFAs and, unexpectedly, in total oil content (Zou et al. 1997).In our efforts to modify the fatty acid composition of oil in rapeseed, in particular to increase the content of VLCFAs, we have addressed the question of optimizing the environment for the correct functioning of LPAATs encoded by transgenes. The above studies using the various LPAAT transgenes indicate that channeling of UFAs into sn-2 of oilseed species remains problematic. The ability to obtain oils with uniform composition strongly depends on the occupancy of sn-2 by UFAs, yet the level of occupancy of sn-2 by fatty acids corresponding to the selectivity of the introduced LPAAT is variable and relatively modest. Occupancy of sn-2 is determined in part by the ability of the LPAAT encoded by the transgene to compete with the endogenous enzyme, a function of the acyl-CoA substrates available to the enzymes and the relative efficiencies of the enzymes to compete for the donor and acceptor substrates. We argued that there is latitude for the reduction of competing activities using an antisense strategy, and although microsomal LPAATs have been cloned from rapeseed, there are no reports of the characterization of the enzyme. Our objectives in this work were to identify and evaluate the potential contribution of LPAAT isozymes to TAG biosynthesis in rapeseed, thereby discerning targets for optimizing efforts to modify oils for industrial purposes. In this study, we catalogue a previously undescribed complexity in microsomal LPAAT diversity and identify a LPAAT isozyme likely to play an important role in TAG synthesis in rapeseed. In contrast to diverged LPAATs of plant origin, we demonstrate a positive effect of the overexpression of microsomal LPAATs on oil content and seed weight.  相似文献   
59.

Background

Kernel moisture at harvest is an important trait since a low value is required to prevent unexpected early germination and ensure seed preservation. It is also well known that early germination occurs in viviparous mutants, which are impaired in abscisic acid (ABA) biosynthesis. To provide some insight into the genetic determinism of kernel desiccation in maize, quantitative trait loci (QTLs) were detected for traits related to kernel moisture and ABA content in both embryo and endosperm during kernel desiccation. In parallel, the expression and mapping of genes involved in kernel desiccation and ABA biosynthesis, were examined to detect candidate genes.

Results

The use of an intermated recombinant inbred line population allowed for precise QTL mapping. For 29 traits examined in an unreplicated time course trial of days after pollination, a total of 78 QTLs were detected, 43 being related to kernel desiccation, 15 to kernel weight and 20 to ABA content. Multi QTL models explained 35 to 50% of the phenotypic variation for traits related to water status, indicating a large genetic control amenable to breeding. Ten of the 20 loci controlling ABA content colocated with previously detected QTLs controlling water status and ABA content in water stressed leaves. Mapping of candidate genes associated with kernel desiccation and ABA biosynthesis revealed several colocations between genes with putative functions and QTLs. Parallel investigation via RT-PCR experiments showed that the expression patterns of the ABA-responsive Rab17 and Rab28 genes as well as the late embryogenesis abundant Emb5 and aquaporin genes were related to desiccation rate and parental allele effect. Database searches led to the identification and mapping of two zeaxanthin epoxidase (ZEP) and five novel 9-cis-epoxycarotenoid dioxygenase (NCED) related genes, both gene families being involved in ABA biosynthesis. The expression of these genes appeared independent in the embryo and endosperm and not correlated with ABA content in either tissue.

Conclusions

A high resolution QTL map for kernel desiccation and ABA content in embryo and endosperm showed several precise colocations between desiccation and ABA traits. Five new members of the maize NCED gene family and another maize ZEP gene were identified and mapped. Among all the identified candidates, aquaporins and members of the Responsive to ABA gene family appeared better candidates than NCEDs and ZEPs.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号