首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3423篇
  免费   268篇
  3691篇
  2024年   1篇
  2023年   8篇
  2022年   26篇
  2021年   59篇
  2020年   24篇
  2019年   29篇
  2018年   44篇
  2017年   35篇
  2016年   88篇
  2015年   111篇
  2014年   147篇
  2013年   226篇
  2012年   264篇
  2011年   248篇
  2010年   187篇
  2009年   166篇
  2008年   228篇
  2007年   240篇
  2006年   221篇
  2005年   187篇
  2004年   220篇
  2003年   207篇
  2002年   195篇
  2001年   36篇
  2000年   35篇
  1999年   38篇
  1998年   87篇
  1997年   47篇
  1996年   45篇
  1995年   35篇
  1994年   34篇
  1993年   33篇
  1992年   23篇
  1991年   21篇
  1990年   12篇
  1989年   14篇
  1988年   15篇
  1987年   6篇
  1986年   4篇
  1985年   6篇
  1984年   8篇
  1983年   2篇
  1982年   9篇
  1981年   9篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1975年   2篇
排序方式: 共有3691条查询结果,搜索用时 15 毫秒
31.
There is a strong demand from the wine industry for methodologies to reduce the alcohol content of wine without compromising wine''s sensory characteristics. We assessed the potential of adaptive laboratory evolution strategies under hyperosmotic stress for generation of Saccharomyces cerevisiae wine yeast strains with enhanced glycerol and reduced ethanol yields. Experimental evolution on KCl resulted, after 200 generations, in strains that had higher glycerol and lower ethanol production than the ancestral strain. This major metabolic shift was accompanied by reduced fermentative capacities, suggesting a trade-off between high glycerol production and fermentation rate. Several evolved strains retaining good fermentation performance were selected. These strains produced more succinate and 2,3-butanediol than the ancestral strain and did not accumulate undesirable organoleptic compounds, such as acetate, acetaldehyde, or acetoin. They survived better under osmotic stress and glucose starvation conditions than the ancestral strain, suggesting that the forces that drove the redirection of carbon fluxes involved a combination of osmotic and salt stresses and carbon limitation. To further decrease the ethanol yield, a breeding strategy was used, generating intrastrain hybrids that produced more glycerol than the evolved strain. Pilot-scale fermentation on Syrah using evolved and hybrid strains produced wine with 0.6% (vol/vol) and 1.3% (vol/vol) less ethanol, more glycerol and 2,3-butanediol, and less acetate than the ancestral strain. This work demonstrates that the combination of adaptive evolution and breeding is a valuable alternative to rational design for remodeling the yeast metabolic network.  相似文献   
32.
33.
34.
Organic microfossils preserved in three dimensions in transparent mineral matrices such as cherts/quartzites, phosphates, or carbonates are best studied in petrographic thin sections. Moreover, microscale mass spectrometry techniques commonly require flat, polished surfaces to minimize analytical bias. However, contamination by epoxy resin in traditional petrographic sections is problematic for the geochemical study of the kerogen in these microfossils and more generally for the in situ analysis of fossil organic matter. Here, we show that epoxy contamination has a molecular signature that is difficult to distinguish from kerogen with time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). This contamination appears pervasive in organic microstructures embedded in micro‐ to nano‐crystalline carbonate. To solve this problem, a new semi‐thin section preparation protocol without resin medium was developed for micro‐ to nanoscale in situ investigation of insoluble organic matter. We show that these sections are suited for microscopic observation of Proterozoic microfossils in cherts. ToF‐SIMS reveals that these sections are free of pollution after final removal of a <10 nm layer of contamination using low‐dose ion sputtering. ToF‐SIMS maps of fragments from aliphatic and aromatic molecules and organic sulfur are correlated with the spatial distribution of organic microlaminae in a Jurassic stromatolite. Hydrocarbon‐derived ions also appeared correlated with kerogenous microstructures in Archean cherts. These developments in analytical procedures should help future investigations of organic matter and in particular, microfossils, by allowing the spatial correlation of microscopy, spectroscopy, precise isotopic microanalyses, and novel molecular microanalyses such as ToF‐SIMS.  相似文献   
35.
Peroxisome biogenesis relies on two known peroxisome matrix protein import pathways that are mediated by the receptors PEX5 and PEX7. These pathways converge at the importomer, a peroxisome‐membrane complex that is required for protein translocation into peroxisomes and consists of docking and RING–finger subcomplexes. In the fungus Podospora anserina, the RING–finger peroxins are crucial for meiocyte formation, while PEX5, PEX7 or the docking peroxin PEX14 are not. Here we show that PEX14 and the PEX14‐related protein PEX14/17 are differentially involved in peroxisome import during development. PEX14/17 activity does not compensate for loss of PEX14 function, and elimination of both proteins has no effect on meiocyte differentiation. In contrast, the docking peroxin PEX13, and the peroxins implicated in peroxisome membrane biogenesis PEX3 and PEX19, are required for meiocyte formation. Remarkably, the PTS2 coreceptor PEX20 is also essential for meiocyte differentiation and this function does not require PEX5 or PEX7. This finding suggests that PEX20 can mediate the import receptor activity of specific peroxisome matrix proteins. Our results suggest a new pathway for peroxisome import, which relies on PEX20 as import receptor and which seems critically required for specific developmental processes, like meiocyte differentiation in P. anserina.  相似文献   
36.
37.
The role of inflammation and oxidative stress in the development of obesity and associated metabolic disorders is under debate. We investigated the redox metabolism in a non-diabetic obesity model, i.e. 11-week-old obese Zucker rats. Antioxidant enzyme activities, lipophilic antioxidant (alpha-tocopherol, coenzymes Q) and hydrophilic antioxidant (glutathione, vitamin C) contents and their redox state (% oxidized form), were studied in inguinal white fat and compared with blood and liver. The adipose tissues of obese animals showed a specific higher content of hydrophilic molecules in a lower redox state than those of lean animals, which were associated with lower lipophilic molecule content and lipid peroxidation. Conversely and as expected, glutathione content decreased and its redox state increased in adipose tissues of rats subjected to lipopolysaccharide-induced systemic oxidative stress. In these in vivo models, oxidative stress and obesity thus had opposite effects on adipose tissue redox state. Moreover, the increase in glutathione content and the decrease of its redox state by antioxidant treatment promoted in vitro the accumulation of triglycerides in preadipocytes. Taken together and contrary to the emergent view, our results suggest that obesity is associated with an intracellular reduced redox state that promotes on its own the development of a deleterious proadipogenic process.  相似文献   
38.
To infect plants, viruses rely heavily on their host's machinery. Plant genetic resistances based on host factor modifications can be found among existing natural variability and are widely used for some but not all crops. While biotechnology can supply for the lack of natural resistance alleles, new strategies need to be developed to increase resistance spectra and durability without impairing plant development. Here, we assess how the targeted allele modification of the Arabidopsis thaliana translation initiation factor eIF4E1 can lead to broad and efficient resistance to the major group of potyviruses. A synthetic Arabidopsis thaliana eIF4E1 allele was designed by introducing multiple amino acid changes associated with resistance to potyvirus in naturally occurring Pisum sativum alleles. This new allele encodes a functional protein while maintaining plant resistance to a potyvirus isolate that usually hijacks eIF4E1. Due to its biological functionality, this synthetic allele allows, at no developmental cost, the pyramiding of resistances to potyviruses that selectively use the two major translation initiation factors, eIF4E1 or its isoform eIFiso4E. Moreover, this combination extends the resistance spectrum to potyvirus isolates for which no efficient resistance has so far been found, including resistance‐breaking isolates and an unrelated virus belonging to the Luteoviridae family. This study is a proof‐of‐concept for the efficiency of gene engineering combined with knowledge of natural variation to generate trans‐species virus resistance at no developmental cost to the plant. This has implications for breeding of crops with broad‐spectrum and high durability resistance using recent genome editing techniques.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号