首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3404篇
  免费   262篇
  3666篇
  2024年   1篇
  2023年   8篇
  2022年   25篇
  2021年   59篇
  2020年   24篇
  2019年   29篇
  2018年   43篇
  2017年   35篇
  2016年   88篇
  2015年   111篇
  2014年   147篇
  2013年   222篇
  2012年   262篇
  2011年   247篇
  2010年   184篇
  2009年   166篇
  2008年   227篇
  2007年   240篇
  2006年   220篇
  2005年   186篇
  2004年   219篇
  2003年   206篇
  2002年   195篇
  2001年   34篇
  2000年   35篇
  1999年   38篇
  1998年   88篇
  1997年   46篇
  1996年   44篇
  1995年   35篇
  1994年   34篇
  1993年   32篇
  1992年   21篇
  1991年   21篇
  1990年   11篇
  1989年   14篇
  1988年   15篇
  1987年   6篇
  1986年   4篇
  1985年   6篇
  1984年   8篇
  1983年   2篇
  1982年   9篇
  1981年   9篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1975年   2篇
排序方式: 共有3666条查询结果,搜索用时 15 毫秒
991.
Bacteria of the genus Xenorhabdus are mutually associated with entomopathogenic nematodes of the genus Steinernema and are pathogenic to a broad spectrum of insects. The nematodes act as vectors, transmitting the bacteria to insect larvae, which die within a few days of infection. We characterized the early stages of bacterial infection in the insects by constructing a constitutive green fluorescent protein (GFP)-labeled Xenorhabdus nematophila strain. We injected the GFP-labeled bacteria into insects and monitored infection. We found that the bacteria had an extracellular life cycle in the hemolymph and rapidly colonized the anterior midgut region in Spodoptera littoralis larvae. Electron microscopy showed that the bacteria occupied the extracellular matrix of connective tissues within the muscle layers of the Spodoptera midgut. We confirmed the existence of such a specific infection site in the natural route of infection by infesting Spodoptera littoralis larvae with nematodes harboring GFP-labeled Xenorhabdus. When the infective juvenile (IJ) nematodes reached the insect gut, the bacterial cells were rapidly released from the intestinal vesicle into the nematode intestine. Xenorhabdus began to escape from the anus of the nematodes when IJs were wedged in the insect intestinal wall toward the insect hemolymph. Following their release into the insect hemocoel, GFP-labeled bacteria were found only in the anterior midgut region and hemolymph of Spodoptera larvae. Comparative infection assays conducted with another insect, Locusta migratoria, also showed early bacterial colonization of connective tissues. This work shows that the extracellular matrix acts as a particular colonization site for X. nematophila within insects.  相似文献   
992.
993.
994.
Whether the myogenic regulatory factors (MRFs) of the MyoD family can discriminate among the muscle gene targets for the proper and reproducible formation of skeletal muscle is a recurrent question. We have previously shown that, in Xenopus laevis, myogenin specifically transactivated muscle structural genes in vivo. In the present study, we used the Xenopus model to examine the role of XMyoD, XMyf5, and XMRF4 for the transactivation of the (nicotinic acetylcholine receptor) nAChR genes in vivo. During early Xenopus development, the expression patterns of nAChR subunit genes proved to be correlated with the expression patterns of the MRFs. We show that XMyf5 specifically induced the expression of the delta-subunit gene in cap animal assays and in endoderm cells of Xenopus embryos but was unable to activate the expression of the gamma-subunit gene. In embryos, overexpression of a dominant-negative XMyf5 variant led to the repression of delta-but not gamma-subunit gene expression. Conversely, XMyoD and XMRF4 activated gamma-subunit gene expression but were unable to activate delta-subunit gene expression. Finally, all MRFs induced expression of the alpha-subunit gene. These findings strengthen the concept that one MRF can specifically control a subset of muscle genes that cannot be activated by the other MRFs.  相似文献   
995.
996.
Activated human T lymphocytes exposed to apoptotic stimuli targeting mitochondria (i.e. staurosporine), enter an early, caspase-independent phase of commitment to apoptosis characterized by cell shrinkage and peripheral chromatin condensation. We show that during this phase, AIF is selectively released from the intermembrane space of mitochondria, and that Bax undergo conformational change, relocation to mitochondria, and insertion into the outer mitochondrial membrane, in a Bid-independent manner. We analyzed the subcellular distribution of cathepsins (Cat) B, D, and L, in a search for caspase-independent factors responsible for Bax activation and AIF release. All were translocated from lysosomes to the cytosol, in correlation with limited destabilization of the lysosomes and release of lysosomal molecules in a size selective manner. However, only inhibition of Cat D activity by pepstatin A inhibited the early apoptotic events and delayed cell death, even in the presence of bafilomycin A1, an inhibitor of vacuolar type H+-ATPase, which inhibits acidification in lysosomes. Small interfering RNA-mediated gene silencing was used to inactivate Cat D, Bax, and AIF gene expression. This allowed us to define a novel sequence of events in which Cat D triggers Bax activation, Bax induces the selective release of mitochondrial AIF, and the latter is responsible for the early apoptotic phenotype.  相似文献   
997.
998.
Lysophosphatidic acid (LPA) is a bioactive molecule involved in inflammation, immunity, wound healing, and neoplasia. Its pleiotropic actions arise presumably by interaction with their cell surface G protein-coupled receptors. Herein, the presence of the specific nuclear lysophosphatidic acid receptor-1 (LPA1R) was revealed in unstimulated porcine cerebral microvascular endothelial cells (pCMVECs), LPA1R stably transfected HTC4 rat hepatoma cells, and rat liver tissue using complementary approaches, including radioligand binding experiments, electron- and cryomicroscopy, cell fractionation, and immunoblotting with three distinct antibodies. Coimmunoprecipitation studies in enriched plasmalemmal fractions of unstimulated pCMVEC showed that LPA1Rs are dually sequestrated in caveolin-1 and clathrin subcompartments, whereas in nuclear fractions LPA1R appeared primarily in caveolae. Immunofluorescent assays using a cell-free isolated nuclear system confirmed LPA1R and caveolin-1 co-localization. In pCMVEC, LPA-stimulated increases in cyclooxygenase-2 and inducible nitric-oxide synthase RNA and protein expression were insensitive to caveolea-disrupting agents but sensitive to LPA-generating phospholipase A2 enzyme and tyrosine kinase inhibitors. Moreover, LPA-induced increases in Ca2+ transients and/or iNOS expression in highly purified rat liver nuclei were prevented by pertussis toxin, phosphoinositide 3-kinase/Akt inhibitor wortmannin and Ca2+ chelator and channel blockers EGTA and SK&F96365, respectively. This study describes for the first time the nucleus as a potential organelle for LPA intracrine signaling in the regulation of pro-inflammatory gene expression.  相似文献   
999.
Integrin-induced cytoskeletal reorganizations are initiated by Cdc42 and Rac1 but little is known about mechanisms by which integrins activate these Rho GTPases. 14-3-3 proteins are adaptors implicated in binding and regulating the function and subcellular location of numerous signaling molecules. In platelets, the 14-3-3 zeta isoform interacts with the glycoprotein (GP) Ibalpha subunit of the adhesion receptor GP Ib-IX. In this study, we show that integrin-induced activation of Cdc42, activation of Rac, cytoskeletal reorganizations, and cell spreading were inhibited in Chinese hamster ovary cells expressing full-length GP Ibalpha compared with GP Ibalpha lacking the 14-3-3 zeta binding site. Activation of Rho GTPases and cytoskeletal reorganizations were restored by expression of 14-3-3 zeta. Spreading in cells expressing truncated GP Ibalpha was inhibited by co-expressing a chimeric receptor containing interleukin 2 receptor alpha and GP Ibalpha cytoplasmic domain. These results identify a previously unrecognized function of 14-3-3 zeta, that of mediating integrin-induced signaling. They show that 14-3-3 zeta mediates Cdc42 and Rac activation. They also reveal a novel function of platelet GP Ib-IX, that of regulating integrin-induced cytoskeletal reorganizations by sequestering 14-3-3 zeta. Signaling across integrins initiates changes in cell behavior such as spreading, migration, differentiation, apoptosis, or cell division. Thus, introduction of the 14-3-3 zeta binding domain of GP Ibalpha into target cells might provide a method for regulating integrin-induced pathways in a variety of pathological conditions.  相似文献   
1000.
To better understand G-protein-coupled receptor (GPCRs) signaling, cellular and animal physiology, as well as gene therapy, a new tool has recently been proposed. It consists of GPCR mutants that are insensitive to endogenous ligands but sensitive to synthetic ligands. These GPCRs are called receptor activated solely by synthetic ligands (RASSL). Only two examples of such engineered receptors have been described so far: one G(i)-coupled (opioid receptors) and one G(s)-coupled (beta(2)-adrenergic receptors). Here, we describe the first RASSL related to serotonin receptors (D100(3.32)A G(s)-coupled 5-HT(4) receptor or 5-HT(4)-RASSL). 5-HT(4)-RASSL is generated by a single mutation, is totally insensitive to serotonin (5-HT), and still responds to synthetic ligands. These ligands have affinities in the range of nanomolar concentrations for the mutant receptor and exhibit full efficacy. More interestingly, two synthetic ligands behave as antagonists on the wild type but as agonists on the 5-HT(4)-RASSL.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号