首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3400篇
  免费   262篇
  2024年   1篇
  2023年   5篇
  2022年   22篇
  2021年   59篇
  2020年   24篇
  2019年   29篇
  2018年   43篇
  2017年   35篇
  2016年   88篇
  2015年   110篇
  2014年   147篇
  2013年   222篇
  2012年   261篇
  2011年   247篇
  2010年   184篇
  2009年   166篇
  2008年   227篇
  2007年   239篇
  2006年   220篇
  2005年   186篇
  2004年   219篇
  2003年   206篇
  2002年   195篇
  2001年   36篇
  2000年   36篇
  1999年   41篇
  1998年   87篇
  1997年   46篇
  1996年   44篇
  1995年   35篇
  1994年   34篇
  1993年   32篇
  1992年   21篇
  1991年   21篇
  1990年   11篇
  1989年   14篇
  1988年   15篇
  1987年   6篇
  1986年   4篇
  1985年   6篇
  1984年   8篇
  1983年   2篇
  1982年   9篇
  1981年   9篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1975年   2篇
排序方式: 共有3662条查询结果,搜索用时 171 毫秒
971.
Proteasomal activity is required for Met receptor degradation after acute stimulation with hepatocyte growth factor (HGF). Inhibition of proteasomal activity with lactacystin leads to a block in the endocytic trafficking of Met such that the receptor fails to reach late endosomes/lysosomes, where degradation by acid-dependent proteases takes place (). In this article, we have biochemically determined Met internalization rates from the cell surface and shown that lactacystin does not inhibit the initial HGF-dependent internalization step of Met. Instead, it promotes the recycling pathway from early endosomes at the expense of sorting to late endosomes, thereby ensuring rapid return of internalized Met to the cell surface. We have used this perturbation of Met endosomal sorting by lactacystin to examine the consequences for HGF-dependent signaling outputs. In control cells HGF-dependent receptor autophosphorylation reaches a maximal level over 5-10 min but then attenuates over the ensuing 50 min. Furthermore, Met dephosphorylation can be kinetically dissociated from Met degradation. In lactacystin-treated cells, we observe a failure of Met dephosphorylation as well as Met degradation. Elements of the mitogen-activated protein kinase cascade, downstream of receptor activation, show a normal kinetic profile of phosphorylation, indicating that the mitogen-activated protein kinase pathway can attenuate in the face of sustained receptor activation. The HGF-dependent phosphorylation of a receptor substrate that is localized to clathrin-coated regions of sorting endosomes, Hrs, is dramatically reduced by lactacystin treatment. Reduction of cellular Hrs levels by short interfering RNA modestly retards Met degradation and markedly prevents the attenuation of Met phosphorylation. HGF-dependent Hrs phosphorylation and Met dephosphorylation may provide signatures for retention of the receptor in coated regions of the endosome implicated in sorting to lysosomes.  相似文献   
972.
Conformational conversion of proteins in disease is likely to be accompanied by molecular surface exposure of previously sequestered amino-acid side chains. We found that induction of beta-sheet structures in recombinant prion proteins is associated with increased solvent accessibility of tyrosine. Antibodies directed against the prion protein repeat motif, tyrosine-tyrosine-arginine, recognize the pathological isoform of the prion protein but not the normal cellular isoform, as assessed by immunoprecipitation, plate capture immunoassay and flow cytometry. Antibody binding to the pathological epitope is saturable and specific, and can be created in vitro by partial denaturation of normal brain prion protein. Conformation-selective exposure of Tyr-Tyr-Arg provides a probe for the distribution and structure of pathologically misfolded prion protein, and may lead to new diagnostics and therapeutics for prion diseases.  相似文献   
973.
Hedgehog proteins use an auto-processing strategy to generate cholesterol-conjugated peptide products that act as extracellular ligands in a number of developmental signaling pathways. We describe an approach that takes advantage of the hedgehog auto-processing reaction to carry out intracellular modification of heterologous proteins, resulting in their localization to cell membranes. Such processing occurs spontaneously, without accessory proteins or modification by other enzymes. Using the green fluorescent protein (GFP) and the product of the Hras as model proteins, we demonstrate the use of hedgehog auto-processing to process heterologous N-terminal domains and direct the resulting biologically active products to cell membranes. This system represents a tool for targeting functional peptides and proteins to cell membranes, and may also offer a means of directing peptides or other small molecules to components of cholesterol metabolism or regulation.  相似文献   
974.
975.
Passenger proteins migrate from inner centromeres to the spindle midzone during late mitosis, and those described to date are essential both for proper chromosome segregation and for completion of cell cleavage. We have purified and cloned the human passenger protein TD-60, and we here report that it is a member of the RCC1 family and that it binds preferentially the nucleotide-free form of the small G protein Rac1. Using siRNA, we further demonstrate that the absence of TD-60 substantially suppresses overall spindle assembly, blocks cells in prometaphase, and activates the spindle assembly checkpoint. These defects suggest TD-60 may have a role in global spindle assembly or may be specifically required to integrate kinetochores into the mitotic spindle. The latter is consistent with a TD-60 requirement for recruitment of the passenger proteins survivin and Aurora B, and suggests that like other passenger proteins, TD-60 is involved in regulation of cell cleavage.  相似文献   
976.
Mona/Gads is a Grb2-related, Src homology 3 (SH3) and SH2 domain-containing adapter protein whose expression is restricted to cells of hematopoietic lineage (i.e., monocytes and T lymphocytes). During monocyte/macrophage differentiation, Mona is induced and interacts with the macrophage colony-stimulating factor receptor, M-CSFR (also called Fms), suggesting that Mona could be involved in developmental signaling downstream of the M-CSFR by recruiting additional signaling proteins to the activated receptor. Our present results identify Mona as a specific partner protein for the DOS/Gab family member Gab3 in monocytic/macrophage development. Mona does not interact with Gab2; however, Gab3 also forms a complex with the Mona-related adapter Grb2. Glutathione S-transferase pull-down experiments demonstrate that the Mona and Gab3 interaction utilizes the carboxy-terminal SH3 domain of Mona and the atypical proline-rich domain of Gab3. Mona is known to interact with the phosphorylated Y697 site of the M-CSFR. The M-CSFR mutation Y697F exhibited qualitative and quantitative abnormalities in receptor and Gab3 tyrosine phosphorylation, and Mona induction was greatly reduced. The Y807F M-CSFR mutation is defective in differentiation signaling, but not growth signaling, and also fails to induce Mona protein expression. During M-CSF-stimulated macrophage differentiation of mouse bone marrow cells, Mona and Gab3 expression is coinduced, these proteins interact, and Mona engages in multimolecular complexes. These data suggest that association of Mona and Gab3 plays a specific role in mediating the M-CSFR differentiation signal.  相似文献   
977.
Many studies have demonstrated that the calcium-dependent proteolytic system (calpains and calpastatin) is involved in myoblast differentiation. It is also known that myogenic differentiation can be studied in vitro. In the present experiments, using a mouse muscle cell line (C2C12) we have analyzed both the sequences of appearance and the expression profiles of calpains 1, 2, 3 and calpastatin during the course of myoblast differentiation. Our results mainly show that the expression of ubiquitous calpains (calpain 1 and 2) and muscle-specific calpain (calpain 3) at the mRNAs level as well as at the protein level do not change significantly all along this biological process. In the same time, the specific inhibitor of ubiquitous calpains, calpastatin, presents a stable expression at mRNAs level as well as protein level, all along myoblast to myotube transition. A comparison with other myogenic cells is presented.  相似文献   
978.
The proteomics analysis reported here shows that a major cellular response to oxidative stress is the modification of several peroxiredoxins. An acidic form of the peroxiredoxins appeared to be systematically increased under oxidative stress conditions. Peroxiredoxins are enzymes catalyzing the destruction of peroxides. In doing so, a reactive cysteine in the peroxiredoxin active site is weakly oxidized (disulfide or sulfenic acid) by the destroyed peroxides. Cellular thiols (e.g. thioredoxin) are used to regenerate the peroxiredoxins to their active state. Tandem mass spectrometry was carried out to characterize the modified form of the protein produced in vivo by oxidative stress. The cysteine present in the active site was shown to be oxidized into cysteic acid, leading to an inactivated form of peroxiredoxin. This strongly suggested that peroxiredoxins behave as a dam upon oxidative stress, being both important peroxide-destroying enzymes and peroxide targets. Results obtained in a primary culture of Leydig cells challenged with tumor necrosis factor alpha suggested that this oxidized/native balance of peroxiredoxin 2 may play an active role in resistance or susceptibility to tumor necrosis factor alpha-induced apoptosis.  相似文献   
979.
Procollagen C-proteinase enhancer (PCPE) is an extracellular matrix glycoprotein that binds to the C-propeptide of procollagen I and can enhance the activities of procollagen C-proteinases up to 20-fold. To determine the molecular mechanism of PCPE activity, the interactions of the recombinant protein with the procollagen molecule as well as with its isolated C-propeptide domain were studied using surface plasmon resonance (BIAcore) technology. Binding required the presence of divalent metal cations such as calcium and manganese. By ligand blotting, calcium was found to bind to the C-propeptide domains of procollagens I and III but not to PCPE. By chemical cross-linking, the stoichiometry of the PCPE/C-propeptide interaction was found to be 1:1 in accordance with enzyme kinetic data. The use of a monoclonal antibody directed against the N-terminal region of the C-propeptide suggested that this region is probably not involved in binding to PCPE. Association and dissociation kinetics of the C-propeptide domains of procollagens I and III on immobilized PCPE were rapid. Extrapolation to saturation equilibrium yielded apparent equilibrium dissociation constants in the range 150-400 nM. In contrast, the association/dissociation kinetics of intact procollagen molecules on immobilized PCPE were relatively slow, corresponding to a dissociation constant of 1 nM. Finally, pN-collagen (i.e. procollagen devoid of the C-terminal propeptide domain) was also found to bind to immobilized PCPE, suggesting that PCPE binds to sites on either side of the procollagen cleavage site, thereby facilitating the action of procollagen C-proteinases.  相似文献   
980.
Silencing of transgenes is a frequent event after the random integration of foreign DNA in the host genome following microinjection. Long genomic fragments are expected to contain all the regulatory elements necessary to induce an appropriate expression of transgenes. A bacterial artificial chromosome containing the porcine wap gene with approximately 145 and 5 kb of 5'- and 3'-flanking sequences, respectively, was microinjected into fertilized mouse ovocytes. In the six transgenic lines studied, expression was strictly specific to the mammary gland of lactating animals and was position-independent. Levels of exogenous porcine wap mRNA per copy compared favorably with the porcine wap mRNA yield in the mammary gland of a 9-day lactating pig. These findings suggest that this insert contained most if not all of the cis-acting elements involved in the full specific expression of the porcine wap gene. These elements constitute good candidates for directing the optimized expression of protein recombinant-encoding genes in the mammary gland of lactating animals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号