In higher plants, lysophosphatidic acid acyltransferase (LPAAT), located in the cytoplasmic endomembrane compartment, plays an essential role in the synthesis of phosphatidic acid, a key intermediate in the biosynthesis of membrane phospholipids in all tissues and storage lipids in developing seeds. In order to assess the contribution of LPAATs to the synthesis of storage lipids, we have characterized two microsomal LPAAT isozymes, the products of homoeologous genes that are expressed in rapeseed (
Brassica napus). DNA sequence homologies, complementation of a bacterial LPAAT-deficient mutant, and enzymatic properties confirmed that each of two cDNAs isolated from a
Brassica napus immature embryo library encoded a functional LPAAT possessing the properties of a eukaryotic pathway enzyme. Analyses in planta revealed differences in the expression of the two genes, one of which was detected in all rapeseed tissues and during silique and seed development, whereas the expression of the second gene was restricted predominantly to siliques and developing seeds. Expression of each rapeseed LPAAT isozyme in Arabidopsis (
Arabidopsis thaliana) resulted in the production of seeds characterized by a greater lipid content and seed mass. These results support the hypothesis that increasing the expression of glycerolipid acyltransferases in seeds leads to a greater flux of intermediates through the Kennedy pathway and results in enhanced triacylglycerol accumulation.With increasing environmental challenges and concerns, there is renewed interest in deriving plant-based sustainable alternatives for petroleum products, including carburants, lubricants, and industrial feed stocks. Modifying oilseed crops to produce oils of uniform composition containing fatty acids varying in chain length or possessing reactive functional groups is a primary objective (
Jaworski and Cahoon, 2003), as is that of increasing the yield of seed oil (
Lardizabal et al., 2008;
Zheng et al., 2008). Early success in modifying seed oils to produce the more common fatty acids has been tempered by limited success in the production of high levels of unusual fatty acids (UFAs) in cultivated oilseeds (
Thelen and Ohlrogge, 2002;
Drexler et al., 2003). Such studies have led to the conclusion that in order to achieve levels of UFAs similar to those present in the oil of native species, enzymatic activities additional to fatty acid modification are necessary to optimize the synthesis (
Mekhedov et al., 2001), stability (
Eccleston and Ohlrogge, 1998), and channeling (
Bafor et al., 1990) of the desired fatty acid into triacylglycerol (TAG).The synthesis of glycerolipids occurs in the cytoplasm using de novo-synthesized fatty acids exported from the plastid as acyl-CoA thioesters. The fatty acyl groups are incorporated into membrane and storage lipids by the sequential esterification of glycerol-3-phosphate by the action of glycerol-3-phosphate acyltransferase (GPAT; EC 2.3.1.15) at
sn-1 to form lysophosphatidic acid followed by lysophosphatidic acid acyltransferase (LPAAT; EC 2.3.1.51) at
sn-2 to form phosphatidic acid (PA;
Somerville et al., 2000). Dephosphorylation of PA results in the formation of diacylglycerol (DAG), which in developing seeds may be directed into the production of TAG by acyl-CoA-independent reactions or by diacylglycerol acyltransferase (DAGAT; EC 2.3.1.20;
Roscoe, 2005). The substrate preferences for acyl-thioesters and the selectivities for the acceptor molecules displayed by the microsomal acyltransferases play a crucial role in establishing the acyl composition of lipids (
Frentzen, 1998). The TAG synthesized in most oilseeds of agronomic importance contains fatty acids that are the same as those present in cytoplasmic membrane lipids. In contrast, the seeds of species that synthesize TAGs with exotic fatty acid compositions possess microsomal acyltransferases that facilitate the incorporation of UFAs into storage lipids because of their broad GPAT and/or their selective DAGAT specificities (
Wiberg et al., 1994;
Frentzen, 1998). Furthermore, oilseeds characterized by TAGs that contain UFAs at
sn-2 possess additional seed-specific microsomal LPAATs (
Brown et al., 1995;
Hanke et al., 1995;
Knutzon et al., 1995) that exhibit a wide variation in substrate preference and that serve to ensure the channeling of UFAs to this position, thereby segregating incompatible fatty acids away from membrane lipids.Cloning of cDNAs from cultivated and exotic plants and the availability of entirely sequenced genomes from plant and algal species have revealed that a minimum of two classes of genes encoding microsomal LPAATs exist (
Frentzen, 1998) within a larger,
LPAAT-like gene family containing acyltransferases as yet functionally uncharacterized but distinct from GPATs (
Roscoe, 2005). The class A microsomal LPAATs defined by
Frentzen (1998) possess substrate preferences for C18:1-CoA typical of enzymes involved in membrane lipid synthesis and are ubiquitously expressed in the plant. In contrast, individual members of the class B LPAATs display preferences for distinct, unusual saturated or unsaturated acyl groups and are normally expressed in storage organs. Although class B LPAATs have been exploited to alter the stereochemical composition of rapeseed (
Brassica napus) oil to permit the incorporation of modified fatty acids at
sn-2 (
Lassner et al., 1995;
Knutzon et al., 1999), a significant increase in the total amount of UFAs was not accomplished by the expression of the class B LPAATs alone. In contrast, the transformation of rapeseed and Arabidopsis (
Arabidopsis thaliana) with a yeast gene encoding a variant LPAAT,
SLC1-1, capable of accepting very long chain fatty acyl (VLCFA)-CoA substrates resulted in an increase in the total VLCFAs and, unexpectedly, in total oil content (
Zou et al. 1997).In our efforts to modify the fatty acid composition of oil in rapeseed, in particular to increase the content of VLCFAs, we have addressed the question of optimizing the environment for the correct functioning of LPAATs encoded by transgenes. The above studies using the various
LPAAT transgenes indicate that channeling of UFAs into
sn-2 of oilseed species remains problematic. The ability to obtain oils with uniform composition strongly depends on the occupancy of
sn-2 by UFAs, yet the level of occupancy of
sn-2 by fatty acids corresponding to the selectivity of the introduced LPAAT is variable and relatively modest. Occupancy of
sn-2 is determined in part by the ability of the LPAAT encoded by the transgene to compete with the endogenous enzyme, a function of the acyl-CoA substrates available to the enzymes and the relative efficiencies of the enzymes to compete for the donor and acceptor substrates. We argued that there is latitude for the reduction of competing activities using an antisense strategy, and although microsomal LPAATs have been cloned from rapeseed, there are no reports of the characterization of the enzyme. Our objectives in this work were to identify and evaluate the potential contribution of LPAAT isozymes to TAG biosynthesis in rapeseed, thereby discerning targets for optimizing efforts to modify oils for industrial purposes. In this study, we catalogue a previously undescribed complexity in microsomal LPAAT diversity and identify a LPAAT isozyme likely to play an important role in TAG synthesis in rapeseed. In contrast to diverged LPAATs of plant origin, we demonstrate a positive effect of the overexpression of microsomal LPAATs on oil content and seed weight.
相似文献