首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4858篇
  免费   354篇
  5212篇
  2022年   33篇
  2021年   75篇
  2020年   34篇
  2019年   45篇
  2018年   55篇
  2017年   46篇
  2016年   104篇
  2015年   138篇
  2014年   188篇
  2013年   283篇
  2012年   328篇
  2011年   306篇
  2010年   224篇
  2009年   203篇
  2008年   285篇
  2007年   302篇
  2006年   276篇
  2005年   235篇
  2004年   268篇
  2003年   276篇
  2002年   256篇
  2001年   85篇
  2000年   91篇
  1999年   92篇
  1998年   101篇
  1997年   70篇
  1996年   56篇
  1995年   54篇
  1994年   53篇
  1993年   49篇
  1992年   66篇
  1991年   50篇
  1990年   44篇
  1989年   40篇
  1988年   31篇
  1987年   20篇
  1986年   18篇
  1985年   34篇
  1984年   20篇
  1983年   19篇
  1982年   25篇
  1981年   18篇
  1979年   17篇
  1978年   12篇
  1975年   19篇
  1974年   14篇
  1973年   15篇
  1972年   13篇
  1971年   16篇
  1967年   17篇
排序方式: 共有5212条查询结果,搜索用时 15 毫秒
81.
Bianchi A  Shore D 《Cell》2007,128(6):1051-1062
The maintenance of an appropriate number of telomere repeats by telomerase is essential for proper chromosome protection. The action of telomerase at the telomere terminus is regulated by opposing activities that either recruit/activate the enzyme at shorter telomeres or inhibit it at longer ones, thus achieving a stable average telomere length. To elucidate the mechanistic details of telomerase regulation we engineered specific chromosome ends in yeast so that a single telomere could be suddenly shortened and, as a consequence of its reduced length, elongated by telomerase. We show that shortened telomeres replicate early in S phase, unlike normal-length telomeres, due to the early firing of origins of DNA replication in subtelomeric regions. Early telomere replication correlates with increased telomere length and telomerase activity. These data reveal an epigenetic effect of telomere length on the activity of nearby replication origins and an unanticipated link between telomere replication timing and telomerase action.  相似文献   
82.
Saccharomyces cerevisiae NAD(H)‐dependent 2,3‐butanediol dehydrogenase (Bdh1), a medium chain dehydrogenase/reductase is the main enzyme catalyzing the reduction of acetoin to 2,3‐butanediol. In this work we focused on altering the coenzyme specificity of Bdh1 from NAD(H) to NADP(H). Based on homology studies and the crystal structure of the NADP(H)‐dependent yeast alcohol dehydrogenase Adh6, three adjacent residues (Glu221, Ile222, and Ala223) were predicted to be involved in the coenzyme specificity of Bdh1 and were altered by site‐directed mutagenesis. Coenzyme reversal of Bdh1 was obtained with double Glu221Ser/Ile222Arg and triple Glu221Ser/Ile222Arg/Ala223Ser mutants. The performance of the triple mutant for NADPH was close to that of native Bdh1 for NADH. The three engineered mutants were able to restore the growth of a phosphoglucose isomerase deficient strain (pgi), which cannot grow on glucose unless an alternative NADPH oxidizing system is provided, thus demonstrating their in vivo functionality. These mutants are interesting tools to reduce the excess of acetoin produced by engineered brewing or wine yeasts overproducing glycerol. In addition, they represent promising tools for the manipulation of the NADP(H) metabolism and for the development of a powerful catalyst in biotransformations requiring NADPH regeneration. Biotechnol. Bioeng. 2009; 104: 381–389 © 2009 Wiley Periodicals, Inc.  相似文献   
83.
Genes encoding proteins involved in sperm-egg interaction and fertilization exhibit a particularly fast evolution and may participate in prezygotic species isolation [1], [2]. Some of them (ZP3, ADAM1, ADAM2, ACR and CD9) have individually been shown to evolve under positive selection [3], [4], suggesting a role of positive Darwinian selection on sperm-egg interaction. However, the genes involved in this biological function have not been systematically and exhaustively studied with an evolutionary perspective, in particular across vertebrates with internal and external fertilization. Here we show that 33 genes among the 69 that have been experimentally shown to be involved in fertilization in at least one taxon in vertebrates are under positive selection. Moreover, we identified 17 pseudogenes and 39 genes that have at least one duplicate in one species. For 15 genes, we found neither positive selection, nor gene copies or pseudogenes. Genes of teleosts, especially genes involved in sperm-oolemma fusion, appear to be more frequently under positive selection than genes of birds and eutherians. In contrast, pseudogenization, gene loss and gene gain are more frequent in eutherians. Thus, each of the 19 studied vertebrate species exhibits a unique signature characterized by gene gain and loss, as well as position of amino acids under positive selection. Reflecting these clade-specific signatures, teleosts and eutherian mammals are recovered as clades in a parsimony analysis. Interestingly the same analysis places Xenopus apart from teleosts, with which it shares the primitive external fertilization, and locates it along with amniotes (which share internal fertilization), suggesting that external or internal environmental conditions of germ cell interaction may not be the unique factors that drive the evolution of fertilization genes. Our work should improve our understanding of the fertilization process and on the establishment of reproductive barriers, for example by offering new leads for experiments on genes identified as positively selected.  相似文献   
84.
Two distinct fractions of Musca domestica arylphorin were isolated by affinity chromatography on Concanavalin A-Sepharose column. The results show that in the hexameric arylphorin that do not bind to the lectin there is no Concanavalin A binding subunit and in the majority of the hexamers that bind to the lectin there is only one subunit with Concanavalin A binding site. The results indicate that the carbohydrate moiety of the arylphorin is not involved in its specific uptake by the fat bodies and integument.  相似文献   
85.
QST is a differentiation parameter based on the decomposition of the genetic variance of a trait. In the case of additive inheritance and absence of selection, it is analogous to the genic differentiation measured on individual loci, FST. Thus, QST?FST comparison is used to infer selection: selective divergence when QST > FST, or convergence when QST < FST. The definition of Q‐statistics was extended to two‐level hierarchical population structures with Hardy–Weinberg equilibrium. Here, we generalize the Q‐statistics framework to any hierarchical population structure. First, we developed the analytical definition of hierarchical Q‐statistics for populations not at Hardy–Weinberg equilibrium. We show that the Q‐statistics values obtained with the Hardy–Weinberg definition are lower than their corresponding F‐statistics when FIS > 0 (higher when FIS < 0). Then, we used an island model simulation approach to investigate the impact of inbreeding and dominance on the QST?FST framework in a hierarchical population structure. We show that, while differentiation at the lower hierarchical level (QSR) is a monotonic function of migration, differentiation at the upper level (QRT) is not. In the case of additive inheritance, we show that inbreeding inflates the variance of QRT, which can increase the frequency of QRT > FRT cases. We also show that dominance drastically reduces Q‐statistics below F‐statistics for any level of the hierarchy. Therefore, high values of Q‐statistics are good indicators of selection, but low values are not in the case of dominance.  相似文献   
86.
Summary A cluster of four Azospirillum brasilense histidine biosynthetic genes, hisA, hisB, hisF and hisH, was identified on a 4.5 kb DNA fragment and its organization studied by complementation analysis of Escherichia coli mutations and nucleotide sequence. The nucleotide sequence of a 1.3 kb fragment that complemented the E. coli hisB mutation was determined and an ORF of 624 nucleotides which can code for a protein of 207 amino acids was identified. A significant base sequence homology with the carboxyterminal moiety of the E. coli hisB gene (0.53) and the Saccharomyces cerevisiae HIS3 gene (0.44), coding for an imidazole glycerolphosphate dehydratase activity was found. The amino acid sequence and composition, the hydropathic profile and the predicted secondary structures of the yeast, E. coli and A. brasilense proteins were compared. The significance of the data presented is discussed.Abbreviations IGP imidazole glycerolphosphate - HP histidinolphosphate  相似文献   
87.
88.
A recombinant dog gastric lipase with therapeutic potential for the treatment of exocrine pancreatic insufficiency was expressed in transgenic tobacco plants. We targeted the protein using two different signal sequences for either vacuolar retention or secretion. In both cases, an active glycosylated recombinant protein was obtained. The recombinant enzymes and the native enzyme displayed similar properties including acid resistance and acidic optimum pH. The proteolytic maturation and the specific activity of the recombinant proteins, however, were found to be dependent on subcellular compartmentalization. Expression levels of recombinant dog gastric lipase were about 5% and 7% of acid extractable plant proteins for vacuolar retention and secretion respectively. This expression system already has allowed the production of tens of grams of purified lipase through open-field culture of transgenic tobacco plants.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号