首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2677篇
  免费   243篇
  国内免费   8篇
  2022年   28篇
  2021年   42篇
  2020年   23篇
  2019年   36篇
  2018年   54篇
  2017年   39篇
  2016年   51篇
  2015年   97篇
  2014年   106篇
  2013年   146篇
  2012年   231篇
  2011年   182篇
  2010年   115篇
  2009年   112篇
  2008年   153篇
  2007年   173篇
  2006年   169篇
  2005年   130篇
  2004年   163篇
  2003年   128篇
  2002年   114篇
  2001年   45篇
  2000年   36篇
  1999年   30篇
  1998年   41篇
  1997年   24篇
  1996年   19篇
  1995年   25篇
  1994年   28篇
  1993年   28篇
  1992年   24篇
  1991年   22篇
  1990年   22篇
  1989年   16篇
  1988年   20篇
  1987年   17篇
  1986年   16篇
  1985年   13篇
  1984年   10篇
  1983年   16篇
  1982年   18篇
  1980年   12篇
  1978年   10篇
  1977年   12篇
  1974年   11篇
  1973年   14篇
  1971年   8篇
  1970年   10篇
  1968年   7篇
  1967年   7篇
排序方式: 共有2928条查询结果,搜索用时 15 毫秒
51.
Summary The anion transport across the red blood cell membrane is assumed to occur by ionic diffusion through dielectric pores which are formed by protein molecules spanning the red blood cell membrane. The access of anions to the dielectric pores is regulated by anion adsorption sites positioned at the entrances of the pores. The adsorption of small inorganic anions to the adsorption sites is facilitated by ionizing cationic groups setting up a surface potential at the respective membrane surfaces. Applying the transition state theory of rate processes, flux equations for the unidirectional flux were derived expressing the unidirectional flux as a function of the fractional occupancies of anion adsorption sites at both membrane surfaces.The basic properties of the transport model were investigated. The concentration-dependence and the pH-dependence of the unidirectional fluxes were shown to depend upon the surface charge density and upon the affinity of the transported anion species to the anion binding sites. The concentration-response and the pH-response of the unidirectional fluxes of different anion species may differ substantially even if the anion species are transported by the same anion transport system. The model predicts a characteristic behavior of the Lineweaver-Burk plot and of the Dixon plot.A comparison between computer simulated and experimentally determined flux curves was made. By choosing a suitable set of parameters, the anion transport model is capable of simulating the concentration-dependencies and the pH-dependencies of the unidirectional sulfate and chloride flux. It is sufficient to change one single constant in order to convert the sulfate transport system into a chloride transport system. Furthermore, the model is capable of predicting the inhibitory action of chloride on the sulfate transport system. No attempts were made to fit the experimental data to the model. The behavior of the model was qualitatively in accordance with the experimental results.  相似文献   
52.
A series of mutations in mice was tested for splenic NK-cell activity against YAC-1 target cells. Mutations at six loci that reduce NK-cell activity in the homozygous state were identified, including beige (bg), hairless (hr), motheaten (me), obese (ob), steel (Sl) and, to a lesser extent, dominant spotting (W). Motheaten mice displayed the most profound NK-cell deficiency, with NK-cell activity virtually absent. Two mutations, nude (nu) and lymphoproliferation (Ipr), produced elevated NK-cell-mediated lysis. The double homozygous recessivenu/nu bg/bg nude-beige mouse was viable and NK-cell-deficient, with activity slightly higher than that of +/?bg/bg beige littermate controls. Pigmentation mutants related to beige, including pale ears (ep), pearl (pe), and ruby eyes (ru 2J ) did not dramatically influence NK-cell levels. Unlike the obese gene, other mutations leading to obesity, diabetes (db) and yellow (Asuy), did not impair NK-cell function. The possible site of gene action of these mutants in the NK-cell pathway is discussed.  相似文献   
53.
Receptor tyrosine kinases couple to multiple intracellular effector molecules that are crucial for normal cell growth and transformation. Stimulation of membrane phospholipid hydrolysis by receptor tyrosine kinases is one such pathway for generating intracellular second messengers that may be important for mitogenesis. Certain receptor tyrosine kinases tyrosine phosphorylate a phosphoinositide-specific phospholipase C that hydrolyses the membrane phospholipid phosphatidylinositol 4,5-bisphosphate. In contrast, the glycoprotein receptor for colony stimulating factor 1, a transmembrane tyrosine kinase, does not utilize this pathway, but rather stimulates the hydrolysis of phosphatidylcholine. Here we show that eluates of antiphosphotyrosine affinity purified lysates of colony-stimulating factor 1-stimulated cells contain elevated levels of phosphatidylcholine-specific phospholipase C activity. The affinity-purified activity is sensitive to tyrosine-specific T-cell phosphatase, and is detected in the membrane fraction of stimulated cells. Recovery of phospholipase C activity in the antiphosphotyrosine protein fraction is reduced by pertussis toxin pretreatment of cells. The phosphatidylcholine phospholipase C activity in isolated membranes of colony-stimulating factor 1-treated cells was also reduced by pertussis toxin treatment and stimulated by guanosine 5'-3-O-(thio)triphosphate. These results indicate that colony stimulating factor 1 receptor-mediated stimulation of phosphatidylcholine-specific phospholipase C requires tyrosine phosphorylation, and might be affected by a G-protein coupled pathway.  相似文献   
54.
Strictly anaerobic bacteria were enriched and isolated from freshwater sediment sources in the presence and absence of sulfate with sorbic acid as sole source of carbon and energy. Strain WoSo1, a Gram-negative vibrioid sulfate-reducing bacterium which was assigned to the species Desulfoarculus (formerly Desulfovibrio) baarsii oxidized sorbic acid completely to CO2 with concomitant stoichiometric reduction of sulfate to sulfide. This strain also oxidized a wide variety of fatty acids and other organic compounds. A Gram-negative rod-shaped fermenting bacterium, strain AmSo1, fermented sorbic acid stoichiometrically to about equal amounts of acetate and butyrate. At concentrations higher than 10 mM, sorbic acid fermentation led to the production of pentanone-2 and isopentanone-2 (3-methyl-2-butanone) as byproducts. Strain AmSo1 fermented also crotonate and 3-hydroxybutyrate to acetate and butyrate, and hexoses to acetate, ethanol, hydrogen, and formate. The guanine-plus-cytosine content of the DNA was 41.8±1.0 mol%. Sorbic acid at concentrations higher than 5 mM inhibited growth of this strain while strain WoSo1 tolerated sorbic acid up to 10 mM concentration.  相似文献   
55.
Two different kappa light chain genes have previously been isolated from one mouse myeloma. The V (variable, abbreviations in ref. 2) gene segments of the two genes were now used to identify their germline counterparts in EcoRI digests of mouse liver DNA. In addition two sets of related V gene segments were found which hybridize with either of the two DNA probes. Five of the V region fragments of one set were cloned in a lambda phage vector and partially characterized by restriction mapping and Southern blot hybridization. Repetitive DNA sequences were found on each of the five fragments as well as on other cloned immunoglobulin gene containing fragments. Cross-hybridization between some but not all of the regions containing repetitive DNA sequences was observed.  相似文献   
56.
The reactions catalyzed by proline oxidase and pyrroline-5-carboxylate reductase form a catalytic cycle linking the hexose-monophosphate pentose (HMP) pathway to mitochondrial ATP generation. The cycling of proline and pyrroline-5-carboxylate couples glucose oxidation to ATP generation by a mechanism independent of the Embden-Meyerhof pathway and the tricarboxylic acid cycle.  相似文献   
57.
58.
Summary The sulfate and the chloride self-exchange fluxes were determined by measuring the rate of the tracer efflux from radioactively labeled human red blood cells and red blood cell ghosts. The concentration dependence and the pH-dependence of the sulfate self-exchange flux were studied. In addition, the effects of some monovalent and divalent anions on the sulfate and the chloride self-exchange fluxes were investigated.The sulfate self-exchange fluxes saturate, exhibiting a concentration maximum at sulfate concentrations between 100 and 300mm (25°C). The position of the concentration maximum depends upon pH. At high sulfate concentrations a self-inhibition of the flux becomes apparent. The apparent half-saturation constant and the apparent self-inhibition constant at pH 7.2 were 30mm and 400mm respectively. Within the pH range of 6.3–8.5, both constants decreased with increasing pH. No saturation of the sulfate self-exchange flux was observed if the sulfate concentration was raised by substituting sulfate for isoosmotic amounts of a second salt (NaCl, NaNO3, Na-acetate, Na-lactate, Na-succinate or Na2HPO4). Red blood cells and red blood cell ghosts display the same pattern of concentration responsiveness.The sulfate self-exchange flux exhibits a pH-maximum at about pH 6.2 (37°C). The location of the pH-maximum is little affected by variations of the sulfate concentration. The logarithmic plots (log vs. pH) revealed that the flux/pH relation can be approximated by two straight lines. The slopes of the alkaline branches of the flux/pH curves range from –0.55 to –0.86, the slopes of the branches of the curves range from 0.08 to 1.14 and were strongly affected by changes of the sulfate concentrations. The apparent pK's obtained from the alkaline and from the acidic branches of the flux/pH curves were about 7.0 and 6.0, respectively. Intact red blood cells and red blood cell ghosts display the same type of pH-dependency of the sulfate self-exchange flux.The sulfate self-exchange flux is competitively inhibited by nitrate, chloride, acetate, oxalate and phosphate. The chloride self-exchange flux is competitively inhibited by thiocyanate, nitrate, sulfate and phosphate. The inhibition constants for the various anion species increase in the given sequence.The results of our studies indicate that the sulfate self-exchange flux is mediated by a two-site transport mechanism consisting either of a mobile carrier or a two-site pore. The experiments reported in this paper do not permit distinguishing between both transport mechanisms. The similarities of the sulfate and the chloride self-exchange flux and the mutual competition between sulfate and chloride point to a common transport system for both anion species.  相似文献   
59.
The ultrastructure of the small granular, proteinaceous cells of 11 species of lumbricid earthworm is described and no species differences were recorded. The cells are characterized by the presence of membrane-bound, electron dense granules (0.6–0.7 urn in diameter) arising from polarized Golgi systems in close topographical relationship to the granular endoplasmic reticulum. Variations in electron density of the granules appear to be associated with maturation of the granules. The granules show a finely reticular substructure at high magnification. A less than fully mature stage of this cell type is described.
The occurrence of the small granular cell type in the annelids is discussed, as is the possible function of its secretion.
The confusions in the lumbricid literature concerning this cell type are discussed, and the much referred to figure of the 'albumen' cell type in English texts is shown not to be equivalent to the small granular, proteinaceous type referred to in this and a previous histochemical study.  相似文献   
60.
Important brain functions need to be conserved throughout organisms of extremely varying sizes. Here we study the scaling properties of an essential component of computation in the brain: the single neuron. We compare morphology and signal propagation of a uniquely identifiable interneuron, the HS cell, in the blowfly (Calliphora) with its exact counterpart in the fruit fly (Drosophila) which is about four times smaller in each dimension. Anatomical features of the HS cell scale isometrically and minimise wiring costs but, by themselves, do not scale to preserve the electrotonic behaviour. However, the membrane properties are set to conserve dendritic as well as axonal delays and attenuation as well as dendritic integration of visual information. In conclusion, the electrotonic structure of a neuron, the HS cell in this case, is surprisingly stable over a wide range of morphological scales.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号