首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   419篇
  免费   28篇
  2023年   3篇
  2022年   2篇
  2021年   16篇
  2020年   5篇
  2018年   7篇
  2017年   5篇
  2016年   8篇
  2015年   14篇
  2014年   11篇
  2013年   19篇
  2012年   27篇
  2011年   17篇
  2010年   15篇
  2009年   11篇
  2008年   20篇
  2007年   21篇
  2006年   17篇
  2005年   22篇
  2004年   15篇
  2003年   12篇
  2002年   10篇
  2001年   15篇
  2000年   12篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1994年   2篇
  1993年   7篇
  1992年   6篇
  1991年   6篇
  1990年   17篇
  1989年   16篇
  1988年   5篇
  1987年   9篇
  1986年   4篇
  1985年   5篇
  1984年   6篇
  1983年   4篇
  1981年   7篇
  1980年   3篇
  1979年   6篇
  1977年   2篇
  1975年   4篇
  1974年   4篇
  1973年   2篇
  1936年   2篇
  1935年   1篇
  1918年   1篇
  1911年   1篇
排序方式: 共有447条查询结果,搜索用时 15 毫秒
41.
Studies were conducted to determine the comparative effects of tocopherols and tocotrienols on preneoplastic (CL-S1), neoplastic (-SA), and highly malignant (+SA) mouse mammary epithelial cell growth and viability in vitro. Over a 5-day culture period, treatment with 0-120 microM alpha- and gamma-tocopherol had no effect on cell proliferation, whereas growth was inhibited 50% (IC50) as compared with controls by treatment with the following: 13, 7, and 6 microM tocotrienol-rich-fraction of palm oil (TRF); 55, 47, and 23 microM delta-tocopherol; 12, 7, and 5 microM alpha-tocotrienol; 8, 5, and 4 microM gamma-tocotrienol; or 7, 4, and 3 microM delta-tocotrienol in CL-S1, -SA and +SA cells, respectively. Acute 24-hr exposure to 0-250 microM alpha- or gamma-tocopherol (CL-S1, -SA, and +SA) or 0-250 microM delta-tocopherol (CL-S1) had no effect on cell viability, whereas cell viability was reduced 50% (LD50) as compared with controls by treatment with 166 or 125 microM delta-tocopherol in -SA and +SA cells, respectively. Additional LD50 doses were determined as the following: 50, 43, and 38 microM TRF; 27, 28, and 23 microM alpha-tocotrienol; 19, 17, and 14 microM gamma-tocotrienol; or 16, 15, or 12 microM delta-tocotrienol in CL-S1, -SA, and +SA cells, respectively. Treatment-induced cell death resulted from activation of apoptosis, as indicated by DNA fragmentation. Results also showed that CL-S1, -SA, and +SA cells preferentially accumulate tocotrienols as compared with tocopherols, and this may partially explain why tocotrienols display greater biopotency than tocopherols. These data also showed that highly malignant +SA cells were the most sensitive, whereas the preneoplastic CL-S1 cells were the least sensitive to the antiproliferative and apoptotic effects of tocotrienols, and suggest that tocotrienols may have potential health benefits in preventing and/or reducing the risk of breast cancer in women.  相似文献   
42.
Development of assisted reproductive technologies (ART) in the dog has resisted progress for decades, due to their unique reproductive physiology. This lack of progress is remarkable given the critical role ART could play in conserving endangered canid species or eradicating heritable disease through gene-editing technologies—an approach that would also advance the dog as a biomedical model. Over 350 heritable disorders/traits in dogs are homologous with human conditions, almost twice the number of any other species. Here we report the first live births from in vitro fertilized embryos in the dog. Adding to the practical significance, these embryos had also been cryopreserved. Changes in handling of both gametes enabled this progress. The medium previously used to capacitate sperm excluded magnesium because it delayed spontaneous acrosome exocytosis. We found that magnesium significantly enhanced sperm hyperactivation and ability to undergo physiologically-induced acrosome exocytosis, two functions essential to fertilize an egg. Unlike other mammals, dogs ovulate a primary oocyte, which reaches metaphase II on Days 4–5 after the luteinizing hormone (LH) surge. We found that only on Day 6 are oocytes consistently able to be fertilized. In vitro fertilization of Day 6 oocytes with sperm capacitated in medium supplemented with magnesium resulted in high rates of embryo development (78.8%, n = 146). Intra-oviductal transfer of nineteen cryopreserved, in vitro fertilization (IVF)-derived embryos resulted in seven live, healthy puppies. Development of IVF enables modern genetic approaches to be applied more efficiently in dogs, and for gamete rescue to conserve endangered canid species.  相似文献   
43.
The number of acceptable donor lungs available for lung transplantation is severely limited due to poor quality. Ex-Vivo Lung Perfusion (EVLP) has allowed lung transplantation in humans to become more readily available by enabling the ability to assess organs and expand the donor pool. As this technology expands and improves, the ability to potentially evaluate and improve the quality of substandard lungs prior to transplant is a critical need. In order to more rigorously evaluate these approaches, a reproducible animal model needs to be established that would allow for testing of improved techniques and management of the donated lungs as well as to the lung-transplant recipient. In addition, an EVLP animal model of associated pathologies, e.g., ventilation induced lung injury (VILI), would provide a novel method to evaluate treatments for these pathologies. Here, we describe the development of a rat EVLP lung program and refinements to this method that allow for a reproducible model for future expansion. We also describe the application of this EVLP system to model VILI in rat lungs. The goal is to provide the research community with key information and “pearls of wisdom”/techniques that arose from trial and error and are critical to establishing an EVLP system that is robust and reproducible.  相似文献   
44.
Objectives:  Previous studies have shown that γ-tocotrienol induces potent anti-proliferative effects on +SA mammary tumour cells in culture; here, investigations have been conducted to determine its effects on intracellular signalling proteins involved in regulating cell cycle progression.
Materials and methods:  +SA cells were maintained in mitogen-free defined media containing 0 or 4 μ m γ-tocotrienol, for 48 h to synchronize cell cycle in G0 phase, and then they were exposed to 100 ng/ml EGF to initiate cell cycle progression. Whole cell lysates were collected at various time points from each treatment group and were prepared for Western blot analysis.
Results and conclusions:  Treatment with 4 μ m γ-tocotrienol significantly inhibited +SA cell proliferation over a 4-day culture period. Moreover, this treatment resulted in a relatively large reduction in cyclin D1, cyclin dependent kinase (CDK)4, CDK2 and CDK6 levels, between 4 and 24 h after EGF exposure. Tocotrienol treatment also resulted in a relatively large increase in CDK inhibitor (CKI) p27, prior to and after EGF exposure, but had little effect on levels of CKIs, p21 and p15. Tocotrienol treatment also induced a large relative reduction in retinoblastoma (Rb) protein phosphorylation at ser780 and ser807/811. These findings strongly suggest that anti-proliferative effects of γ-tocotrienol are associated with reduction in cell cycle progression from G1 to S, as evidenced by increased p27 levels, and a corresponding decrease in cyclin D1, CDK2, CDK4, CDK6 and phosphorylated Rb levels.  相似文献   
45.
Sodium channels are one of the most intensively studied drug targets. Sodium channel inhibitors (e.g., local anesthetics, anticonvulsants, antiarrhythmics and analgesics) exert their effect by stabilizing an inactivated conformation of the channels. Besides the fast-inactivated conformation, sodium channels have several distinct slow-inactivated conformational states. Stabilization of a slow-inactivated state has been proposed to be advantageous for certain therapeutic applications. Special voltage protocols are used to evoke slow inactivation of sodium channels. It is assumed that efficacy of a drug in these protocols indicates slow-inactivated state preference. We tested this assumption in simulations using four prototypical drug inhibitory mechanisms (fast or slow-inactivated state preference, with either fast or slow binding kinetics) and a kinetic model for sodium channels. Unexpectedly, we found that efficacy in these protocols (e.g., a shift of the “steady-state slow inactivation curve”), was not a reliable indicator of slow-inactivated state preference. Slowly associating fast-inactivated state-preferring drugs were indistinguishable from slow-inactivated state-preferring drugs. On the other hand, fast- and slow-inactivated state-preferring drugs tended to preferentially affect onset and recovery, respectively. The robustness of these observations was verified: i) by performing a Monte Carlo study on the effects of randomly modifying model parameters, ii) by testing the same drugs in a fundamentally different model and iii) by an analysis of the effect of systematically changing drug-specific parameters. In patch clamp electrophysiology experiments we tested five sodium channel inhibitor drugs on native sodium channels of cultured hippocampal neurons. For lidocaine, phenytoin and carbamazepine our data indicate a preference for the fast-inactivated state, while the results for fluoxetine and desipramine are inconclusive. We suggest that conclusions based on voltage protocols that are used to detect slow-inactivated state preference are unreliable and should be re-evaluated.  相似文献   
46.
Defects in axonal transport and synaptic dysfunctions are associated with early stages of several neurodegenerative diseases including Alzheimer's, Huntington's, Parkinson's, and prion diseases. Here, we tested the effect of full-length mammalian prion protein (rPrP) converted into three conformationally different isoforms to induce pathological changes regarded as early subcellular hallmarks of prion disease. We employed human embryonal teratocarcinoma NTERA2 cells (NT2) that were terminally differentiated into neuronal and glial cells and co-cultured together. We found that rPrP fibrils but not alpha-rPrP or soluble beta-sheet rich oligomers caused degeneration of neuronal processes. Degeneration of processes was accompanied by a collapse of microtubules and aggregation of cytoskeletal proteins, formation of neuritic beads, and a dramatic change in localization of synaptophysin. Our studies demonstrated the utility of NT2 cells as valuable human model system for elucidating subcellular events of prion pathogenesis, and supported the emerging hypothesis that defects in neuronal transport and synaptic abnormalities are early pathological hallmarks associated with prion diseases.  相似文献   
47.
In search of immunomodulatory constituents from the Eastern Nigeria mistletoe, Loranthus micranthus Linn, two new stigmastane steroids: stigmast-7,20 (21)-diene-3β-hydroxy-6-one (1) and 3β-hydroxy-stigmast-23-ene (2); three (two new and one known) lupeol-based triterpenoid esters: 7β,15α-dihydroxyl-lup-20(29)-ene-3β-palmitate (3), 7β,15α-dihydroxyl-lup-20(29)-ene-3β-stearate (4) and 7β,15α-dihydroxyl-lup-20(29)-ene-3β-eicosanoate (5) were isolated and characterized following bioactivity-guided fractionation. The new compounds, 1, 2, 4 and 5 at concentrations of 10, 25 and 100 μg/ml were subjected to cell proliferation and early activation marker (CD69) expression studies in C57Bl/6 mice splenocytes using flow cytometry techniques against Lipopolysaccharide (LPS; 10 μg/ml) and Concanavalin A (ConA; 2 μg/ml) standards. The stigmastane steroids (1 and 2) at the highest concentration of 100 μg/ml showed statistically significantly (p < 0.05) stimulatory activity on the C57B1/6 splenocytes compared to the controls with values of 46 ± 0.76% and 43 ± 0.46% compared to 7.69 ± 0.41% recorded for the negative control. The novel lupeol esters, 4 and 5 at same concentration of 100 μg/ml exhibited lower stimulations of 30 ± 0.41% and 29 ± 0.17% respectively compared to the controls above. The CD69 expression assay at the above doses showed that all the compounds have minimal stimulation. The present study supports the observed immunomodulatory property of the Eastern Nigeria mistletoe and thus confirms the efficacy of this plant in mitigating against wide array of disease conditions orchestrated by immunodeficiency.  相似文献   
48.
49.
50.
Interleukin-1 (IL-1), IL-17 and tumor necrosis factor alpha (TNF-α) are the main proinflammatory cytokines implicated in cartilage breakdown by matrix metalloproteinase (MMPs) in arthritic joints. We studied the impact of an anti-neoplastic antibiotic, mithramycin, on the induction of MMPs in chondrocytes. MMP-3 and MMP-13 gene expression induced by IL-1β, TNF-α and IL-17 was downregulated by mithramycin in human chondrosarcoma SW1353 cells and in primary human and bovine femoral head chondrocytes. Constitutive and IL-1-stimulated MMP-13 levels in bovine and human cartilage explants were also suppressed. Mithramycin did not significantly affect the phosphorylation of the mitogen-activated protein kinases, extracellular signal-regulated kinase, p38 and c-Jun N-terminal kinase. Despite effective inhibition of MMP expression by mithramycin and its potential to reduce cartilage degeneration, the agent might work through multiple unidentified mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号