首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2097篇
  免费   208篇
  2305篇
  2023年   14篇
  2022年   31篇
  2021年   51篇
  2020年   37篇
  2019年   31篇
  2018年   45篇
  2017年   45篇
  2016年   81篇
  2015年   110篇
  2014年   147篇
  2013年   145篇
  2012年   169篇
  2011年   163篇
  2010年   129篇
  2009年   128篇
  2008年   154篇
  2007年   129篇
  2006年   135篇
  2005年   109篇
  2004年   123篇
  2003年   97篇
  2002年   86篇
  2001年   17篇
  2000年   4篇
  1999年   10篇
  1998年   12篇
  1997年   5篇
  1996年   7篇
  1995年   6篇
  1994年   13篇
  1993年   6篇
  1992年   19篇
  1991年   6篇
  1990年   6篇
  1989年   4篇
  1986年   2篇
  1985年   2篇
  1984年   6篇
  1983年   4篇
  1982年   4篇
  1981年   2篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1958年   1篇
  1943年   1篇
  1936年   1篇
  1935年   1篇
排序方式: 共有2305条查询结果,搜索用时 15 毫秒
831.
Small-angle neutron scattering studies of Escherichia coli tyrosyl-tRNA synthetase indicate that in solution this enzyme is a dimer of Mr, 91 (±6) × 103 with a radius of gyration RG of 37.8 ± 1.1 Å.The increase in the scattering mass of the enzyme upon binding tRNATyr has been followed in 20 mm-imidazole · HCl (pH 7.6), 10 mm-MgCl2, 0.1 mm-EDTA, 10 mm-2-mercaptoethanol, 150 mm-KCl. A stoichiometry of one bound tRNA per dimeric enzyme molecule was found. The RG of the complex is equal to 41 ± 1 Å. Titration experiments in 74% 2H2O, close to the matching point of tRNA, show an RG of 38.5 ± 1 Å for the enzyme moiety in the complex. From these values, a minimum distance of 49 Å between the centre of mass of the bound tRNA and that of the enzyme was calculated.In low ionic strength conditions (20 mm-imidazole-HCl (pH 7.6), 10 mm-MgCl2, 0.1 mm-EDTA, 10 mm-2-mercaptoethanol) and at limiting tRNA concentrations with respect to the enzyme, titrations of the enzyme by tRNATyr are characterized by the appearance of aggregates, with a maximum scattered intensity at a stoichiometry of one tRNA per two enzyme molecules. At this point, the measured Mr and RG values are compatible with a compact 1:2, tRNA: enzyme complex. This complex forms with a remarkably high stability constant: (enzyme:tRNA:enzyme)/(enzyme:tRNA)(enzyme) of 0.1 to 0.3(× 106) m?1 (at 20 °C). Upon addition of more tRNA, the complex dissociates in favour of the 1:1, enzyme:tRNA complex, which has a higher stability constant (1 to 3 (× 106) m?1).  相似文献   
832.
The folding and activation of furin occur through two pH- and compartment-specific autoproteolytic steps. In the endoplasmic reticulum (ER), profurin folds under the guidance of its prodomain and undergoes an autoproteolytic excision at the consensus furin site Arg-Thr-Lys-Arg107/ generating an enzymatically masked furin-propeptide complex competent for transport to late secretory compartments. In the mildly acidic environment of the trans-Golgi network/endosomal system, the bound propeptide is cleaved at the internal site 69HRGVTKR75/, unmasking active furin capable of cleaving substrates in trans. Here, by using cellular, biochemical, and modeling studies, we demonstrate that the conserved His69 is a pH sensor that regulates the compartment-specific cleavages of the propeptide. In the ER, unprotonated His69 stabilizes a solvent-accessible hydrophobic pocket necessary for autoproteolytic excision at Arg107. Profurin molecules unable to form the hydrophobic pocket, and hence, the furin-propeptide complex, are restricted to the ER by a PACS-2- and COPI-dependent mechanism. Once exposed to the acidic pH of the late secretory pathway, protonated His69 disrupts the hydrophobic pocket, resulting in exposure and cleavage of the internal cleavage site at Arg75 to unmask the enzyme. Together, our data explain the pH-regulated activation of furin and how this His-dependent regulatory mechanism is a model for other proteins.  相似文献   
833.
Several microbes and chemicals have been considered as potential tracers to identify fecal sources in the environment. However, to date, no one approach has been shown to accurately identify the origins of fecal pollution in aquatic environments. In this multilaboratory study, different microbial and chemical indicators were analyzed in order to distinguish human fecal sources from nonhuman fecal sources using wastewaters and slurries from diverse geographical areas within Europe. Twenty-six parameters, which were later combined to form derived variables for statistical analyses, were obtained by performing methods that were achievable in all the participant laboratories: enumeration of fecal coliform bacteria, enterococci, clostridia, somatic coliphages, F-specific RNA phages, bacteriophages infecting Bacteroides fragilis RYC2056 and Bacteroides thetaiotaomicron GA17, and total and sorbitol-fermenting bifidobacteria; genotyping of F-specific RNA phages; biochemical phenotyping of fecal coliform bacteria and enterococci using miniaturized tests; specific detection of Bifidobacterium adolescentis and Bifidobacterium dentium; and measurement of four fecal sterols. A number of potentially useful source indicators were detected (bacteriophages infecting B. thetaiotaomicron, certain genotypes of F-specific bacteriophages, sorbitol-fermenting bifidobacteria, 24-ethylcoprostanol, and epycoprostanol), although no one source identifier alone provided 100% correct classification of the fecal source. Subsequently, 38 variables (both single and derived) were defined from the measured microbial and chemical parameters in order to find the best subset of variables to develop predictive models using the lowest possible number of measured parameters. To this end, several statistical or machine learning methods were evaluated and provided two successful predictive models based on just two variables, giving 100% correct classification: the ratio of the densities of somatic coliphages and phages infecting Bacteroides thetaiotaomicron to the density of somatic coliphages and the ratio of the densities of fecal coliform bacteria and phages infecting Bacteroides thetaiotaomicron to the density of fecal coliform bacteria. Other models with high rates of correct classification were developed, but in these cases, higher numbers of variables were required.  相似文献   
834.
Aspergillus fumigatus was able to grow on apple-purified procyanidins (PCs). PCs concentration decreased 30% over the first 60 h of liquid fermentation. The mean degree of polymerization (DPn) of apple-purified PCs increased from 8 to 15 during the fermentation. A fungal enzyme extract from the liquid fermentation was used to study procyanidin B2 [(-)-epicatechin-(4beta-8)-(-)-epicatechin] degradation. The major degradation product (PB2-X) had a retention time of 10.5 min and a molecular mass at m/z 609. High-performance liquid chromatography/multiple fragment mass spectrometry (HPLC/MS(n)) was used for the structural characterization of PB2-X as well as that of thiolysis-treated PB2-X. Twelve fragment ions at m/z 565, 547, 457, 439 (two fragment ions), 421, 413, 377, 395, 351, 287 and 277 were completely identified. It was therefore deduced that the terminal unit of procyanidin B2 dimer was modified by an oxygenase from A. fumigatus leaving the extension unit intact. In addition, FT-IR analysis confirmed a lactone formation in (-)-epicatechin moiety involved in oxidative degradation. Two reaction schemes were postulated for the interpretation of the results.  相似文献   
835.
SAP is an intracellular adaptor molecule composed almost exclusively of an SH2 domain. It is mutated in patients with X-linked lymphoproliferative disease, a human immunodeficiency. Several immune abnormalities were also identified in SAP-deficient mice. By way of its SH2 domain, SAP interacts with tyrosine-based motifs in the cytoplasmic domain of SLAM family receptors. SAP promotes SLAM family receptor-induced protein tyrosine phosphorylation, due to its capacity to recruit the Src-related kinase FynT. This unusual property relies on the existence of a second binding surface in the SAP SH2 domain, centered on arginine 78 of SAP, that binds directly to the FynT SH3 domain. Herein, we wanted to further understand the mechanisms controlling the interaction between SLAM-SAP and FynT. Our experiments showed that, unlike conventional associations mediated by SH3 domains, the interaction of the FynT SH3 domain with SLAM-SAP was strictly inducible. It was absolutely dependent on engagement of SLAM by extracellular ligands. We obtained evidence that this inducibility was not due to increased binding of SLAM to SAP following SLAM engagement. Furthermore, it could occur independently of any appreciable SLAM-dependent biochemical signal. In fact, our data indicated that the induced association of the FynT SH3 domain with SLAM-SAP was triggered by a change in the conformation of SLAM-associated SAP caused by SLAM engagement. Together, these data elucidate further the events initiating SLAM-SAP signaling in immune cells. Moreover, they identify a strictly inducible interaction mediated by an SH3 domain.  相似文献   
836.
Tumor necrosis factor-alpha (TNF-alpha) is a proinflammatory cytokine that activates several signaling cascades. We determined the extent to which ceramide is a second messenger for TNF-alpha-induced signaling leading to cytoskeletal rearrangement in Rat2 fibroblasts. TNF-alpha, sphingomyelinase, or C(2)-ceramide induced tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin, and stress fiber formation. Ly 294002, a phosphatidylinositol 3-kinase (PI 3-K) inhibitor, or expression of dominant/negative Ras (N17) completely blocked C(2)-ceramide- and sphingomyelinase-induced tyrosine phosphorylation of FAK and paxillin and severely decreased stress fiber formation. The TNF-alpha effects were only partially inhibited. Dimethylsphingosine, a sphingosine kinase (SK) inhibitor, blocked stress fiber formation by TNF-alpha and C(2)-ceramide. TNF-alpha, sphingomyelinase, and C(2)-ceramide translocated Cdc42, Rac, and RhoA to membranes, and stimulated p21-activated protein kinase downstream of Ras-GTP, PI 3-K, and SK. Transfection with inactive RhoA inhibited the TNF-alpha- and C(2)-ceramide-induced stress fiber formation. Our results demonstrate that stimulation by TNF-alpha, which increases sphingomyelinase activity and ceramide formation, activates sphingosine kinase, Rho family GTPases, focal adhesion kinase, and paxillin. This novel pathway of ceramide signaling can account for approximately 70% of TNF-alpha-induced stress fiber formation and cytoskeletal reorganization.  相似文献   
837.
It is now well established that many cellular functions are regulated by interactions of cells with physicochemical and mechanical cues of their extracellular matrix (ECM) environment. Eukaryotic cells constantly sense their local microenvironment through surface mechanosensors to transduce physical changes of ECM into biochemical signals, and integrate these signals to achieve specific changes in gene expression. Interestingly, physicochemical and mechanical parameters of the ECM can couple with each other to regulate cell fate. Therefore, a key to understanding mechanotransduction is to decouple the relative contribution of ECM cues on cellular functions.Here we present a detailed experimental protocol to rapidly and easily generate biologically relevant hydrogels for the independent tuning of mechanotransduction cues in vitro. We chemically modified polyacrylamide hydrogels (PAAm) to surmount their intrinsically non-adhesive properties by incorporating hydroxyl-functionalized acrylamide monomers during the polymerization. We obtained a novel PAAm hydrogel, called hydroxy-PAAm, which permits immobilization of any desired nature of ECM proteins. The combination of hydroxy-PAAm hydrogels with microcontact printing allows to independently control the morphology of single-cells, the matrix stiffness, the nature and the density of ECM proteins. We provide a simple and rapid method that can be set up in every biology lab to study in vitro cell mechanotransduction processes. We validate this novel two-dimensional platform by conducting experiments on endothelial cells that demonstrate a mechanical coupling between ECM stiffness and the nucleus.  相似文献   
838.
This study assesses two hypotheses on the genetic diversity of populations of Gigartina skottsbergii Setchell et Gardner (Rhodophyta, Gigartinales) at the border of the species distribution: 1) peripheral populations display a reduced genetic diversity compared with central populations, and 2) genetic differentiation is higher among peripheral than among central populations. Two peripheral and four central populations were sampled along the Chilean coast and 113 haploid individuals were analyzed using 17 random amplification of polymorphic DNA loci. The genetic diversity was estimated by allele diversity (He), allele richness (Â), and the mean pair‐wise differences among multilocus genotypes. All three estimates consistently and significantly indicated a lower genetic diversity within the peripheral than within the central populations. Genetic differentiation between the two peripheral populations was stronger (FST=0.35) than between central populations at similar spatial scales (FST ranging from 0 to 0.25). In addition, it appeared from the distribution of pair‐wise differences that peripheral populations are in demographic expansion after a recent bottleneck. The results are discussed in the specific context of potential overharvesting of these wild populations.  相似文献   
839.
840.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号