首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2072篇
  免费   204篇
  2276篇
  2024年   1篇
  2023年   14篇
  2022年   31篇
  2021年   50篇
  2020年   37篇
  2019年   31篇
  2018年   44篇
  2017年   45篇
  2016年   80篇
  2015年   110篇
  2014年   147篇
  2013年   144篇
  2012年   167篇
  2011年   162篇
  2010年   129篇
  2009年   128篇
  2008年   153篇
  2007年   128篇
  2006年   133篇
  2005年   108篇
  2004年   120篇
  2003年   97篇
  2002年   85篇
  2001年   16篇
  2000年   4篇
  1999年   10篇
  1998年   12篇
  1997年   5篇
  1996年   7篇
  1995年   6篇
  1994年   13篇
  1993年   6篇
  1992年   19篇
  1991年   5篇
  1990年   5篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1982年   4篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1958年   1篇
排序方式: 共有2276条查询结果,搜索用时 11 毫秒
21.
MAPK-activated protein kinase 5 (MK5) was recently identified as a physiological substrate of the atypical MAPK ERK3. Complex formation between ERK3 and MK5 results in phosphorylation and activation of MK5, concomitant stabilization of ERK3, and the nuclear exclusion of both proteins. However, ablation of ERK3 in HeLa cells using small interfering RNA or in fibroblasts derived from ERK3 null mice reduces the activity of endogenous MK5 by only 50%, suggesting additional mechanisms of MK5 regulation. Here we identify the ERK3-related kinase ERK4 as a bona fide interaction partner of MK5. Binding of ERK4 to MK5 is accompanied by phosphorylation and activation of MK5. Furthermore, complex formation also results in the relocalization of MK5 from nucleus to cytoplasm. However unlike ERK3, ERK4 is a stable protein, and its half-life is not modified by the presence or absence of MK5. Finally, although knock-down of ERK4 protein in HeLa cells reduces endogenous MK5 activity by approximately 50%, a combination of small interfering RNAs targeting both ERK4 and ERK3 causes a further reduction in the MK5 activity by more than 80%. We conclude that MK5 activation is dependent on both ERK3 and ERK4 in these cells and that these atypical MAPKs are both physiological regulators of MK5 activity.  相似文献   
22.
The iconic orange clownfish, Amphiprion percula, is a model organism for studying the ecology and evolution of reef fishes, including patterns of population connectivity, sex change, social organization, habitat selection and adaptation to climate change. Notably, the orange clownfish is the only reef fish for which a complete larval dispersal kernel has been established and was the first fish species for which it was demonstrated that antipredator responses of reef fishes could be impaired by ocean acidification. Despite its importance, molecular resources for this species remain scarce and until now it lacked a reference genome assembly. Here, we present a de novo chromosome‐scale assembly of the genome of the orange clownfish Amphiprion percula. We utilized single‐molecule real‐time sequencing technology from Pacific Biosciences to produce an initial polished assembly comprised of 1,414 contigs, with a contig N50 length of 1.86 Mb. Using Hi‐C‐based chromatin contact maps, 98% of the genome assembly were placed into 24 chromosomes, resulting in a final assembly of 908.8 Mb in length with contig and scaffold N50s of 3.12 and 38.4 Mb, respectively. This makes it one of the most contiguous and complete fish genome assemblies currently available. The genome was annotated with 26,597 protein‐coding genes and contains 96% of the core set of conserved actinopterygian orthologs. The availability of this reference genome assembly as a community resource will further strengthen the role of the orange clownfish as a model species for research on the ecology and evolution of reef fishes.  相似文献   
23.
The lethal mutagenesis hypothesis states that within-host populations of pathogens can be driven to extinction when the load of deleterious mutations is artificially increased with a mutagen, and becomes too high for the population to be maintained. Although chemical mutagens have been shown to lead to important reductions in viral titres for a wide variety of RNA viruses, the theoretical underpinnings of this process are still not clearly established. A few recent models sought to describe lethal mutagenesis but they often relied on restrictive assumptions. We extend this earlier work in two novel directions. First, we derive the dynamics of the genetic load in a multivariate Gaussian fitness landscape akin to classical quantitative genetics models. This fitness landscape yields a continuous distribution of mutation effects on fitness, ranging from deleterious to beneficial (i.e. compensatory) mutations. We also include an additional class of lethal mutations. Second, we couple this evolutionary model with an epidemiological model accounting for the within-host dynamics of the pathogen. We derive the epidemiological and evolutionary equilibrium of the system. At this equilibrium, the density of the pathogen is expected to decrease linearly with the genomic mutation rate U. We also provide a simple expression for the critical mutation rate leading to extinction. Stochastic simulations show that these predictions are accurate for a broad range of parameter values. As they depend on a small set of measurable epidemiological and evolutionary parameters, we used available information on several viruses to make quantitative and testable predictions on critical mutation rates. In the light of this model, we discuss the feasibility of lethal mutagenesis as an efficient therapeutic strategy.  相似文献   
24.
Body size or mass is one of the main factors underlying food webs structure. A large number of evolutionary models have shown that indeed, the adaptive evolution of body size (or mass) can give rise to hierarchically organised trophic levels with complex between and within trophic interactions. However, these models generally make strong arbitrary assumptions on how traits evolve, casting doubts on their robustness. In particular, biomass conversion efficiency is always considered independent of the predator and prey size, which contradicts with the literature. In this paper, we propose a general model encompassing most previous models which allows to show that relaxing arbitrary assumptions gives rise to unrealistic food webs. We then show that considering biomass conversion efficiency dependent on species size is certainly key for food webs adaptive evolution because realistic food webs can evolve, making obsolete the need of arbitrary constraints on traits' evolution. We finally conclude that, on the one hand, ecologists should pay attention to how biomass flows into food webs in models. On the other hand, we question more generally the robustness of evolutionary models for the study of food webs.  相似文献   
25.
26.
It has recently been demonstrated that dried cells of Saccharomyces cerevisiae were able to produce alcohols and aldehydes in a solid/gas reactor with in situ cofactor regeneration. Since diffusion of gaseous substrates may be limited by the membrane and cell wall, cell disruption by sonication was used to improve oxidoreduction with ethanol and butyraldehyde as substrates. Results showed that partial cell disruption enhances the maximum conversion yield with the best results obtained after 2 min of sonication. Beyond this time, the ADH activity decreased. Better stability was observed in the pellet obtained after centrifugation indicating the importance of cell environment for enzyme stability. Tests on purified mitochondria showed that the ADH activity in cells was mainly cytoplasmic. The addition of oxidized cofactor did not change either the activity or the stability of the catalyst in a gaseous medium. The effect of water activity was studied on material obtained after 2 min of disruption and a reduction of critical water activity needed for revealing enzymatic activity was observed. With increasing aw, the enzyme was active at aw=0.3 while a water activity of 0.4 was required before disruption. Nevertheless, the best compromise between activity and stability was obtained in both cases for a water activity of 0.57.  相似文献   
27.
Cottonseed remains a low‐value by‐product of lint production mainly due to the presence of toxic gossypol that makes it unfit for monogastrics. Ultra‐low gossypol cottonseed (ULGCS) lines were developed using RNAi knockdown of δ‐cadinene synthase gene(s) in Gossypium hirsutum. The purpose of the current study was to assess the stability and specificity of the ULGCS trait and evaluate the agronomic performance of the transgenic lines. Trials conducted over a period of 3 years show that the ULGCS trait was stable under field conditions and the foliage/floral organs of transgenic lines contained wild‐type levels of gossypol and related terpenoids. Although it was a relatively small‐scale study, we did not observe any negative effects on either the yield or quality of the fibre and seed in the transgenic lines compared with the nontransgenic parental plants. Compositional analysis was performed on the seeds obtained from plants grown in the field during 2009. As expected, the major difference between the ULGCS and wild‐type cottonseeds was in terms of their gossypol levels. With the exception of oil content, the composition of ULGCS was similar to that of nontransgenic cottonseeds. Interestingly, the ULGCS had significantly higher (4%–8%) oil content compared with the seeds from the nontransgenic parent. Field trial results confirmed the stability and specificity of the ULGCS trait suggesting that this RNAi‐based product has the potential to be commercially viable. Thus, it may be possible to enhance and expand the nutritional utility of the annual cottonseed output to fulfil the ever‐increasing needs of humanity.  相似文献   
28.
Plant stomata function in innate immunity against bacterial invasion and abscisic acid (ABA) has been suggested to regulate this process. Using genetic, biochemical, and pharmacological approaches, we demonstrate that (i) the Arabidopsis thaliana nine-specific-lipoxygenase encoding gene, LOX1, which is expressed in guard cells, is required to trigger stomatal closure in response to both bacteria and the pathogen-associated molecular pattern flagellin peptide flg22; (ii) LOX1 participates in stomatal defense; (iii) polyunsaturated fatty acids, the LOX substrates, trigger stomatal closure; (iv) the LOX products, fatty acid hydroperoxides, or reactive electrophile oxylipins induce stomatal closure; and (v) the flg22-mediated stomatal closure is conveyed by both LOX1 and the mitogen-activated protein kinases MPK3 and MPK6 and involves salicylic acid whereas the ABA-induced process depends on the protein kinases OST1, MPK9, or MPK12. Finally, we show that the oxylipin and the ABA pathways converge at the level of the anion channel SLAC1 to regulate stomatal closure. Collectively, our results demonstrate that early biotic signaling in guard cells is an ABA-independent process revealing a novel function of LOX1-dependent stomatal pathway in plant immunity.  相似文献   
29.
The emergence of next-generation sequencing technologies allowed access to the vast amounts of information that are contained in the human genome. This information has contributed to the understanding of individual and population-based variability and improved the understanding of the evolutionary history of different human groups. However, the genome of a representative of the Amerindian populations had not been previously sequenced. Thus, the genome of an individual from a South American tribe was completely sequenced to further the understanding of the genetic variability of Amerindians. A total of 36.8 giga base pairs (Gbp) were sequenced and aligned with the human genome. These Gbp corresponded to 95.92% of the human genome with an estimated miscall rate of 0.0035 per sequenced bp. The data obtained from the alignment were used for SNP (single-nucleotide) and INDEL (insertion-deletion) calling, which resulted in the identification of 502,017 polymorphisms, of which 32,275 were potentially new high-confidence SNPs and 33,795 new INDELs, specific of South Native American populations. The authenticity of the sample as a member of the South Native American populations was confirmed through the analysis of the uniparental (maternal and paternal) lineages. The autosomal comparison distinguished the investigated sample from others continental populations and revealed a close relation to the Eastern Asian populations and Aboriginal Australian. Although, the findings did not discard the classical model of America settlement; it brought new insides to the understanding of the human population history. The present study indicates a remarkable genetic variability in human populations that must still be identified and contributes to the understanding of the genetic variability of South Native American populations and of the human populations history.  相似文献   
30.

Background

The lung is a frequent site of colorectal cancer (CRC) metastases. After surgical resection, lung metastases recurrences have been related to the presence of micrometastases, potentially accessible to a high dose chemotherapy administered via adjuvant isolated lung perfusion (ILP). We sought to determine in vitro the most efficient drug when administered to CRC cell lines during a short exposure and in vivo its immediate and delayed tolerance when administered via ILP.

Methods

First, efficacy of various cytotoxic molecules against a panel of human CRC cell lines was tested in vitro using cytotoxic assay after a 30-minute exposure. Then, early (operative) and delayed (1 month) tolerance of two concentrations of the molecule administered via ILP was tested on 19 adult pigs using hemodynamic, biological and histological criteria.

Results

In vitro, gemcitabine (GEM) was the most efficient drug against selected CRC cell lines. In vivo, GEM was administered via ILP at regular (20 µg/ml) or high (100 µg/ml) concentrations. GEM administration was associated with transient and dose-dependant pulmonary vasoconstriction, leading to a voluntary decrease in pump inflow in order to maintain a stable pulmonary artery pressure. After this modulation, ILP using GEM was not associated with any systemic leak, systemic damage, and acute or delayed histological pulmonary toxicity. Pharmacokinetics studies revealed dose-dependant uptake associated with heterogenous distribution of the molecule into the lung parenchyma, and persistent cytotoxicity of venous effluent.

Conclusions

GEM is effective against CRC cells even after a short exposure. ILP with GEM is a safe and reproducible technique.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号