全文获取类型
收费全文 | 2070篇 |
免费 | 206篇 |
专业分类
2276篇 |
出版年
2024年 | 1篇 |
2023年 | 14篇 |
2022年 | 31篇 |
2021年 | 50篇 |
2020年 | 37篇 |
2019年 | 31篇 |
2018年 | 44篇 |
2017年 | 45篇 |
2016年 | 80篇 |
2015年 | 110篇 |
2014年 | 147篇 |
2013年 | 144篇 |
2012年 | 167篇 |
2011年 | 162篇 |
2010年 | 129篇 |
2009年 | 128篇 |
2008年 | 153篇 |
2007年 | 128篇 |
2006年 | 133篇 |
2005年 | 108篇 |
2004年 | 120篇 |
2003年 | 97篇 |
2002年 | 85篇 |
2001年 | 16篇 |
2000年 | 4篇 |
1999年 | 10篇 |
1998年 | 12篇 |
1997年 | 5篇 |
1996年 | 7篇 |
1995年 | 6篇 |
1994年 | 13篇 |
1993年 | 6篇 |
1992年 | 19篇 |
1991年 | 5篇 |
1990年 | 5篇 |
1989年 | 2篇 |
1988年 | 1篇 |
1986年 | 1篇 |
1985年 | 2篇 |
1984年 | 3篇 |
1983年 | 4篇 |
1982年 | 4篇 |
1981年 | 1篇 |
1979年 | 1篇 |
1976年 | 1篇 |
1975年 | 1篇 |
1974年 | 1篇 |
1972年 | 1篇 |
1958年 | 1篇 |
排序方式: 共有2276条查询结果,搜索用时 15 毫秒
161.
Myriam Lazard Sylvain Blanquet Paola Fisicaro Guillaume Labarraque Pierre Plateau 《The Journal of biological chemistry》2010,285(42):32029-32037
Although the general cytotoxicity of selenite is well established, the mechanism by which this compound crosses cellular membranes is still unknown. Here, we show that in Saccharomyces cerevisiae, the transport system used opportunistically by selenite depends on the phosphate concentration in the growth medium. Both the high and low affinity phosphate transporters are involved in selenite uptake. When cells are grown at low Pi concentrations, the high affinity phosphate transporter Pho84p is the major contributor to selenite uptake. When phosphate is abundant, selenite is internalized through the low affinity Pi transporters (Pho87p, Pho90p, and Pho91p). Accordingly, inactivation of the high affinity phosphate transporter Pho84p results in increased resistance to selenite and reduced uptake in low Pi medium, whereas deletion of SPL2, a negative regulator of low affinity phosphate uptake, results in exacerbated sensitivity to selenite. Measurements of the kinetic parameters for selenite and phosphate uptake demonstrate that there is a competition between phosphate and selenite ions for both Pi transport systems. In addition, our results indicate that Pho84p is very selective for phosphate as compared with selenite, whereas the low affinity transporters discriminate less efficiently between the two ions. The properties of phosphate and selenite transport enable us to propose an explanation to the paradoxical increase of selenite toxicity when phosphate concentration in the growth medium is raised above 1 mm. 相似文献
162.
E Lohou J Sopkova-de Oliveira Santos P Schumann-Bard M Boulouard S Stiebing S Rault V Collot 《Bioorganic & medicinal chemistry》2012,20(17):5296-5304
Taking into account the potency of 4- and 7-nitro and haloindazoles as nNOS inhibitors previously reported in the literature by our team, a multidisciplinary study, described in this article, has recently been carried out to elucidate their binding mode in the enzyme active site. Firstly, nitrogenous fastening points on the indazole building block have been investigated referring to molecular modeling hypotheses and thanks to the in vitro biological evaluation of N(1)- and N(2)-methyl and ethyl-4-substituted indazoles on nNOS. Secondly, we attempted to confirm the importance of the substitution in position 4 or 7 by a hydrogen bond acceptor group thanks to the synthesis and the in vitro biological evaluation of a new analogous 4-substituted derivative, the 4-cyanoindazole. Finally, by opposition to previous hypotheses describing NH function in position 1 of the indazole as a key fastening point, the present work speaks in favour of a crucial role of nitrogen in position 2. 相似文献
163.
164.
Ehsan Sanaei Sylvain Charlat Jan Engelstädter 《Biological reviews of the Cambridge Philosophical Society》2021,96(2):433-453
Wolbachia is one of the most abundant endosymbionts on earth, with a wide distribution especially in arthropods. Effective maternal transmission and the induction of various phenotypes in their hosts are two key features of this bacterium. Here, we review our current understanding of another central aspect of Wolbachia's success: their ability to switch from one host species to another. We build on the proposal that Wolbachia host shifts occur in four main steps: (i) physical transfer to a new species; (ii) proliferation within that host; (iii) successful maternal transmission; and (iv) spread within the host species. Host shift can fail at each of these steps, and the likelihood of ultimate success is influenced by many factors. Some stem from traits of Wolbachia (different strains have different abilities for host switching), others on host features such as genetic resemblance (e.g. host shifting is likely to be easier between closely related species), ecological connections (the donor and recipient host need to interact), or the resident microbiota. Host shifts have enabled Wolbachia to reach its enormous current incidence and global distribution among arthropods in an epidemiological process shaped by loss and acquisition events across host species. The ability of Wolbachia to transfer between species also forms the basis of ongoing endeavours to control pests and disease vectors, following artificial introduction into uninfected hosts such as mosquitoes. Throughout, we emphasise the many knowledge gaps in our understanding of Wolbachia host shifts, and question the effectiveness of current methodology to detect these events. We conclude by discussing an apparent paradox: how can Wolbachia maintain its ability to undergo host shifts given that its biology seems dominated by vertical transmission? 相似文献
165.
Identification of the SPG15 gene, encoding spastizin, as a frequent cause of complicated autosomal-recessive spastic paraplegia, including Kjellin syndrome 下载免费PDF全文
Hanein S Martin E Boukhris A Byrne P Goizet C Hamri A Benomar A Lossos A Denora P Fernandez J Elleuch N Forlani S Durr A Feki I Hutchinson M Santorelli FM Mhiri C Brice A Stevanin G 《American journal of human genetics》2008,82(4):992-1002
Hereditary spastic paraplegias (HSPs) are genetically and phenotypically heterogeneous disorders. Both "uncomplicated" and "complicated" forms have been described with various modes of inheritance. Sixteen loci for autosomal-recessive "complicated" HSP have been mapped. The SPG15 locus was first reported to account for a rare form of spastic paraplegia variably associated with mental impairment, pigmented maculopathy, dysarthria, cerebellar signs, and distal amyotrophy, sometimes designated as Kjellin syndrome. Here, we report the refinement of SPG15 to a 2.64 Mb genetic interval on chromosome 14q23.3-q24.2 and the identification of ZFYVE26, which encodes a zinc-finger protein with a FYVE domain that we named spastizin, as the cause of SPG15. Six different truncating mutations were found to segregate with the disease in eight families with a phenotype that included variable clinical features of Kjellin syndrome. ZFYVE26 mRNA was widely distributed in human tissues, as well as in rat embryos, suggesting a possible role of this gene during embryonic development. In the adult rodent brain, its expression profile closely resembled that of SPG11, another gene responsible for complicated HSP. In cultured cells, spastizin colocalized partially with markers of endoplasmic reticulum and endosomes, suggesting a role in intracellular trafficking. 相似文献
166.
Potential for Virus Endogenization in Humans through Testicular Germ Cell Infection: the Case of HIV
167.
Ankit Dwivedi Christelle Reynes Axel Kuehn Daniel B. Roche Nimol Khim Maxim Hebrard Sylvain Milanesi Eric Rivals Roger Frutos Didier Menard Choukri Ben Mamoun Jacques Colinge Emmanuel Cornillot 《Malaria journal》2017,16(1):493
Background
Plasmodium falciparum malaria is one of the most widespread parasitic infections in humans and remains a leading global health concern. Malaria elimination efforts are threatened by the emergence and spread of resistance to artemisinin-based combination therapy, the first-line treatment of malaria. Promising molecular markers and pathways associated with artemisinin drug resistance have been identified, but the underlying molecular mechanisms of resistance remains unknown. The genomic data from early period of emergence of artemisinin resistance (2008–2011) was evaluated, with aim to define k13 associated genetic background in Cambodia, the country identified as epicentre of anti-malarial drug resistance, through characterization of 167 parasite isolates using a panel of 21,257 SNPs.Results
Eight subpopulations were identified suggesting a process of acquisition of artemisinin resistance consistent with an emergence-selection-diffusion model, supported by the shifting balance theory. Identification of population specific mutations facilitated the characterization of a core set of 57 background genes associated with artemisinin resistance and associated pathways. The analysis indicates that the background of artemisinin resistance was not acquired after drug pressure, rather is the result of fixation followed by selection on the daughter subpopulations derived from the ancestral population.Conclusions
Functional analysis of artemisinin resistance subpopulations illustrates the strong interplay between ubiquitination and cell division or differentiation in artemisinin resistant parasites. The relationship of these pathways with the P. falciparum resistant subpopulation and presence of drug resistance markers in addition to k13, highlights the major role of admixed parasite population in the diffusion of artemisinin resistant background. The diffusion of resistant genes in the Cambodian admixed population after selection resulted from mating of gametocytes of sensitive and resistant parasite populations.168.
Johanna Marin‐Carbonne Vincent Busigny Jennyfer Miot Claire Rollion‐Bard Elodie Muller Nadja Drabon Damien Jacob Sylvain Pont Martin Robyr Tomaso R. R. Bontognali Camille Franois Stephanie Reynaud Mark Van Zuilen Pascal Philippot 《Geobiology》2020,18(3):306-325
On the basis of phylogenetic studies and laboratory cultures, it has been proposed that the ability of microbes to metabolize iron has emerged prior to the Archaea/Bacteria split. However, no unambiguous geochemical data supporting this claim have been put forward in rocks older than 2.7–2.5 giga years (Gyr). In the present work, we report in situ Fe and S isotope composition of pyrite from 3.28‐ to 3.26‐Gyr‐old cherts from the upper Mendon Formation, South Africa. We identified three populations of microscopic pyrites showing a wide range of Fe isotope compositions, which cluster around two δ56Fe values of ?1.8‰ and +1‰. These three pyrite groups can also be distinguished based on the pyrite crystallinity and the S isotope mass‐independent signatures. One pyrite group displays poorly crystallized pyrite minerals with positive Δ33S values > +3‰, while the other groups display more variable and closer to 0‰ Δ33S values with recrystallized pyrite rims. It is worth to note that all the pyrite groups display positive Δ33S values in the pyrite core and similar trace element compositions. We therefore suggest that two of the pyrite groups have experienced late fluid circulations that have led to partial recrystallization and dilution of S isotope mass‐independent signature but not modification of the Fe isotope record. Considering the mineralogy and geochemistry of the pyrites and associated organic material, we conclude that this iron isotope systematic derives from microbial respiration of iron oxides during early diagenesis. Our data extend the geological record of dissimilatory iron reduction (DIR) back more than 560 million years (Myr) and confirm that micro‐organisms closely related to the last common ancestor had the ability to reduce Fe(III). 相似文献
169.
170.
Differential regulation of the chick dorsal thoracic dermal progenitors from the medial dermomyotome
Olivera-Martinez I Missier S Fraboulet S Thélu J Dhouailly D 《Development (Cambridge, England)》2002,129(20):4763-4772
The chick dorsal feather-forming dermis originates from the dorsomedial somite and its formation depends primarily on Wnt1 from the dorsal neural tube. We investigate further the origin and specification of dermal progenitors from the medial dermomyotome. This comprises two distinct domains: the dorsomedial lip and a more central region (or intervening zone) that derives from it. We confirm that Wnt1 induces Wnt11 expression in the dorsomedial lip as previously shown, and show using DiI injections that some of these cells, which continue to express Wnt11 migrate under the ectoderm, towards the midline, to form most of the dorsal dermis. Transplantation of left somites to the right side to reverse the mediolateral axis confirms this finding and moreover suggests the presence of an attractive or permissive environment produced by the midline tissues or/and a repellent or inadequate environment by the lateral tissues. By contrast, the dorsolateral dermal cells just delaminate from the surface of the intervening space, which expresses En1. Excision of the axial organs or the ectoderm, and grafting of Wnt1-secreting cells, shows that, although the two populations of dermal progenitors both requires Wnt1 for their survival, the signalling required for their specification differs. Indeed Wnt11 expression relies on dorsal neural tube-derived Wnt1, while En1 expression depends on the presence of the ectoderm. The dorsal feather-forming dermal progenitors thus appear to be differentially regulated by dorsal signals from the neural tube and the ectoderm, and derive directly and indirectly from the dorsomedial lip. As these two dermomyotomal populations are well known to also give rise to epaxial muscles, an isolated domain of the dermomyotome that contains only dermal precursors does not exist and none of the dermomyotomal domains can be considered uniquely as a dermatome. 相似文献