首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2103篇
  免费   206篇
  2309篇
  2023年   14篇
  2022年   32篇
  2021年   52篇
  2020年   37篇
  2019年   33篇
  2018年   44篇
  2017年   45篇
  2016年   81篇
  2015年   112篇
  2014年   147篇
  2013年   151篇
  2012年   171篇
  2011年   162篇
  2010年   131篇
  2009年   128篇
  2008年   154篇
  2007年   128篇
  2006年   133篇
  2005年   108篇
  2004年   120篇
  2003年   97篇
  2002年   86篇
  2001年   16篇
  2000年   6篇
  1999年   11篇
  1998年   12篇
  1997年   6篇
  1996年   7篇
  1995年   6篇
  1994年   13篇
  1993年   7篇
  1992年   19篇
  1991年   5篇
  1990年   6篇
  1989年   3篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1982年   4篇
  1981年   2篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1964年   1篇
  1958年   1篇
  1946年   1篇
排序方式: 共有2309条查询结果,搜索用时 15 毫秒
151.
In the ubiquitin-proteasome system (UPS), E2 enzymes mediate the conjugation of ubiquitin to substrates and thereby control protein stability and interactions. The E2 enzyme hCdc34 catalyzes the ubiquitination of hundreds of proteins in conjunction with the cullin-RING (CRL) superfamily of E3 enzymes. We identified a small molecule termed CC0651 that selectively inhibits hCdc34. Structure determination revealed that CC0651 inserts into a cryptic binding pocket on hCdc34 distant from the catalytic site, causing subtle but wholesale displacement of E2 secondary structural elements. CC0651 analogs inhibited proliferation of human cancer cell lines and caused accumulation of the SCF(Skp2) substrate p27(Kip1). CC0651 does not affect hCdc34 interactions with E1 or E3 enzymes or the formation of the ubiquitin thioester but instead interferes with the discharge of ubiquitin to acceptor lysine residues. E2 enzymes are thus susceptible to noncatalytic site inhibition and may represent a viable class of drug target in the UPS.  相似文献   
152.
153.
154.
Anosmin-1, encoded by the KAL-1 gene, is the protein defective in the X-linked form of Kallmann syndrome. This human developmental disorder is characterized by defects in cell migration and axon target selection. Anosmin-1 is an extracellular matrix protein that plays a role, in vitro, in processes such as cell adhesion, neurite outgrowth, axon guidance, and axon branching. The zebrafish possesses two orthologues of the KAL-1 gene: kal1a and kal1b, which encode anosmin-1a and anosmin-1b, respectively. Previous in situ hybridization studies have shown that kal1a and kal1b mRNAs are expressed in undetermined cells of the inner ear but not in neuromast cells. Using specific antibodies against anosmin-1a and anosmin-1b, we report here that both proteins are expressed in sensory hair cells of the inner ear cristae ampullaris and the lateral line neuromasts. Accumulation of these proteins was observed mainly at the level of the hair bundle and also at the cell membrane. In neuromast hair cells, immunogold scanning electronmicroscopy demonstrated that anosmin-1a and anosmin-1b were present at the surface of the stereociliary bundle. In addition, anosmin-1a, but not anosmin-1b, was detected on the track of the ampullary nerve. This is the first report of anosmin-1 expression in sensory hair cells of the inner ear and lateral line, and along the ampullary nerve track.  相似文献   
155.
For endangered species that persist as apparently isolated populations within a previously more extensive range, the degree of genetic exchange between those populations is critical to conservation and management. A lack of gene flow can exacerbate impacts of threatening processes and delay or prevent colonization of sites after local extirpation. The broad-headed snake, Hoplocephalus bungaroides, is a small venomous species restricted to a handful of disjunct reserves near Sydney, Australia. Mark-recapture studies have indicated low vagility for this ambush predator, suggesting that gene flow also may be low. However, our analyses of 11 microsatellite loci from 163 snakes collected in Morton National Park, from six sites within a 10-km diameter, suggest relatively high rates of gene flow among sites. Most populations exchange genes with each other, with one large population serving as a source area and smaller populations apparently acting as sinks. About half of the juvenile snakes, for which we could reliably infer parentage, were collected from populations other than those in which we collected their putative parents. As expected from the snakes' reliance on rocky outcrops during cooler months of the year, most gene flow appears to be along sandstone plateaux rather than across the densely forested valleys that separate plateaux. The unexpectedly high rates of gene flow on a landscape scale are encouraging for future conservation of this endangered taxon. For example, wildlife managers could conserve broad-headed snakes by restoring habitats near extant source populations in areas predicted to be least affected by future climate change.  相似文献   
156.
Base composition varies among and within eukaryote genomes. Although mutational bias and selection have initially been invoked, more recently GC-biased gene conversion (gBGC) has been proposed to play a central role in shaping nucleotide landscapes, especially in yeast, mammals, and birds. gBGC is a kind of meiotic drive in favor of G and C alleles, associated with recombination. Previous studies have also suggested that gBGC could be at work in grass genomes. However, these studies were carried on third codon positions that can undergo selection on codon usage. As most preferred codons end in G or C in grasses, gBGC and selection can be confounded. Here we investigated further the forces that might drive GC content evolution in the rice genus using both coding and noncoding sequences. We found that recombination rates correlate positively with equilibrium GC content and that selfing species (Oryza sativa and O. glaberrima) have significantly lower equilibrium GC content compared with more outcrossing species. As recombination is less efficient in selfing species, these results suggest that recombination drives GC content. We also detected a positive relationship between expression levels and GC content in third codon positions, suggesting that selection favors codons ending with G or C bases. However, the correlation between GC content and recombination cannot be explained by selection on codon usage alone as it was also observed in noncoding positions. Finally, analyses of polymorphism data ruled out the hypothesis that genomic variation in GC content is due to mutational processes. Our results suggest that both gBGC and selection on codon usage affect GC content in the Oryza genus and likely in other grass species.  相似文献   
157.
We addressed the role of EFA6, exchange factor for ARF6, during the development of epithelial cell polarity in Madin-Darby canine kidney cells. EFA6 is located primarily at the apical pole of polarized cells, including the plasma membrane. After calcium-triggered E-cadherin-mediated cell adhesion, EFA6 is recruited to a Triton X-100-insoluble fraction and its protein level is increased concomitantly to the accelerated formation of a functional tight junction (TJ). The expression of EFA6 results in the selective retention at the cell surface of the TJ protein occludin. This effect is due to EFA6 capacities to promote selectively the stability of the apical actin ring onto which the TJ is anchored, resulting in the exclusion of TJ proteins from endocytosis. Finally, our data suggest that EFA6 effects are achieved by the coordinate action of both its exchange activity and its actin remodeling C-terminal domain. We conclude that EFA6 is a signaling molecule that responds to E-cadherin engagement and is involved in TJ formation and stability.  相似文献   
158.
DNA gyrase negatively supercoils DNA in a reaction coupled to the binding and hydrolysis of ATP. Limited supercoiling can be achieved in the presence of the non-hydrolysable ATP analogue, 5'-adenylyl beta,gamma-imidodiphosphate (ADPNP). In order to negatively supercoil DNA, gyrase must wrap a length of DNA around itself in a positive sense. In previous work, the effect of ADPNP on the gyrase-DNA interaction has been assessed but has produced conflicting results; the aim of this work was to resolve this conflict. We have probed the wrapping of DNA around gyrase in the presence and in the absence of ADPNP using direct observation by atomic force microscopy (AFM). We confirm that gyrase indeed generates a significant curvature in DNA in the absence of nucleotide and we show that the addition of ADPNP leads to a complete loss of wrap. These results have been corroborated using a DNA relaxation assay involving topoisomerase I. We have re-analysed previous hydroxyl-radical footprinting and crystallography data, and highlight the fact that the gyrase-DNA complex is surprisingly asymmetric in the absence of nucleotide but is symmetric in the presence of ADPNP. We suggest a revised model for the conformation of DNA bound to the enzyme that is fully consistent with these AFM data, in which a closed loop of DNA is stabilised by the enzyme in the absence of ADPNP and is lost in the presence of nucleotide.  相似文献   
159.
160.
A protease can be defined as an enzyme capable of hydrolyzing peptide bonds. Thus, characterization of a protease involves identification of target peptide sequences, measurement of activities toward these sequences, and determination of kinetic parameters. Biological protease substrates based on fluorescent protein pairs, which allow for use of fluorescence resonance energy transfer (FRET), have been recently developed for in vivo protease activity detection and represent a very interesting alternative to chemical substrates for in vitro protease characterization. Here, we analyze a FRET system consisting of cyan and yellow fluorescent proteins (CFP and YFP, respectively), which are fused by a peptide linker serving as protease substrate. Conditions for CFP-YFP fusion protein production in Escherichia coli and purification of proteins were optimized. FRET between CFP and YFP was found to be optimum at a pH between 5.5 and 10.0, at low concentrations of salt and a temperature superior to 25 degrees C. For efficient FRET to occur, the peptide linker between CFP and YFP can measure up to 25 amino acids. The CFP-substrate-YFP system demonstrated a high degree of resistance to nonspecific proteolysis, making it suitable for enzyme kinetic analysis. As with chemical substrates, substrate specificity of CFP-substrate-YFP proteins was tested towards different proteases and kcat/Km values were calculated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号